98 research outputs found

    Social learning and culture in bees: Simple mechanisms, complex outcomes

    Get PDF
    \ua9 Indian Academy of Sciences 2024. Bees have been excellent model systems to study social learning – the ability of animals to change their behaviour based on observations of other individuals. Researchers have investigated several aspects of social learning in bees, including how it can lead to cultural traditions. A recent study also argues that bees have the capacity to socially learn behaviours that they could not innovate on their own. To understand these findings better, I review what we know about the mechanisms underlying social learning in bees and use these findings to compare social learning and culture in bees and humans. The findings suggest that the seemingly complex social behaviours of bees could arise from simple mechanisms underlying learning in general. I highlight the importance of investigating cognitive mechanisms and how they might differ across animals

    Different Effects of Reward Value and Physical Saliency During Bumblebee Visual Search for Multiple Rewarding Targets

    Get PDF
    Several animals, including bees, use visual search to distinguish targets of interest and ignore distractors. While bee flower choice is well studied, we know relatively little about how they choose between multiple rewarding flowers in complex floral environments. Two factors that could influence bee visual search for multiple flowers are the saliency (colour contrast against the background) and the reward value of flowers. We here investigated how these two different factors contribute to bee visual search. We trained bees to independently recognize two rewarding flower types that, in different experiments, differed in either saliency, reward value or both. We then measured their choices and attention to these flowers in the presence of distractors in a test without reinforcement. We found that bees preferred more salient or higher rewarding flowers and ignored distractors. When the high-reward flowers were less salient than the low-reward flowers, bees were nonetheless equally likely to choose high-reward flowers, for the reward and saliency values we used. Bees were also more likely to attend to these high-reward flowers, spending higher inspection times around them and exhibiting faster search times when choosing them. When flowers differed in reward, we also found an effect of the training order with low-reward targets being more likely to be chosen if they had been encountered during the more immediate training session prior to the test. Our results parallel recent findings from humans demonstrating that reward value can attract attention even when targets are less salient and irrelevant to the current task

    Radial density profiles of time-delay lensing galaxies

    Full text link
    We present non-parametric radial mass profiles for ten QSO strong lensing galaxies. Five of the galaxies have profiles close to ρ(r)r2\rho(r)\propto r^{-2}, while the rest are closer to r^{-1}, consistent with an NFW profile. The former are all relatively isolated early-types and dominated by their stellar light. The latter --though the modeling code did not know this-- are either in clusters, or have very high mass-to-light, suggesting dark-matter dominant lenses (one is a actually pair of merging galaxies). The same models give H_0^{-1} = 15.2_{-1.7}^{+2.5}\Gyr (H_0 = 64_{-9}^{+8} \legacy), consistent with a previous determination. When tested on simulated lenses taken from a cosmological hydrodynamical simulation, our modeling pipeline recovers both H_0 and ρ(r)\rho(r) within estimated uncertainties. Our result is contrary to some recent claims that lensing time delays imply either a low H_0 or galaxy profiles much steeper than r^{-2}. We diagnose these claims as resulting from an invalid modeling approximation: that small deviations from a power-law profile have a small effect on lensing time-delays. In fact, as we show using using both perturbation theory and numerical computation from a galaxy-formation simulation, a first-order perturbation of an isothermal lens can produce a zeroth-order change in the time delays.Comment: Replaced with final version accepted for publication in ApJ; very minor changes to text; high resolution figures may be obtained at justinread.ne

    Cosmological Model Predictions for Weak Lensing: Linear and Nonlinear Regimes

    Full text link
    Weak lensing by large scale structure induces correlated ellipticities in the images of distant galaxies. The two-point correlation is determined by the matter power spectrum along the line of sight. We use the fully nonlinear evolution of the power spectrum to compute the predicted ellipticity correlation. We present results for different measures of the second moment for angular scales \theta \simeq 1'-3 degrees and for alternative normalizations of the power spectrum, in order to explore the best strategy for constraining the cosmological parameters. Normalizing to observed cluster abundance the rms amplitude of ellipticity within a 15' radius is \simeq 0.01 z_s^{0.6}, almost independent of the cosmological model, with z_s being the median redshift of background galaxies. Nonlinear effects in the evolution of the power spectrum significantly enhance the ellipticity for \theta < 10' -- on 1' the rms ellipticity is \simeq 0.05, which is nearly twice the linear prediction. This enhancement means that the signal to noise for the ellipticity is only weakly increasing with angle for 2'< \theta < 2 degrees, unlike the expectation from linear theory that it is strongly peaked on degree scales. The scaling with cosmological parameters also changes due to nonlinear effects. By measuring the correlations on small (nonlinear) and large (linear) angular scales, different cosmological parameters can be independently constrained to obtain a model independent estimate of both power spectrum amplitude and matter density \Omega_m. Nonlinear effects also modify the probability distribution of the ellipticity. Using second order perturbation theory we find that over most of the range of interest there are significant deviations from a normal distribution.Comment: 38 pages, 11 figures included. Extended discussion of observational prospects, matches accepted version to appear in Ap

    Rhythmic abilities in humans and non-human animals: a review and recommendations from a methodological perspective

    Get PDF
    Rhythmic behaviour is ubiquitous in both human and non-human animals, but it is unclear whether the cognitive mechanisms underlying the specific rhythmic behaviours observed in different species are related. Laboratory experiments combined with highly controlled stimuli and tasks can be very effective in probing the cognitive architecture underlying rhythmic abilities. Rhythmic abilities have been examined in the laboratory with explicit and implicit perception tasks, and with production tasks, such as sensorimotor synchronization, with stimuli ranging from isochronous sequences of artificial sounds to human music. Here, we provide an overview of experimental findings on rhythmic abilities in human and non-human animals, while critically considering the wide variety of paradigms used. We identify several gaps in what is known about rhythmic abilities. Many bird species have been tested on rhythm perception, but research on rhythm production abilities in the same birds is lacking. By contrast, research in mammals has primarily focused on rhythm production rather than perception. Many experiments also do not differentiate between possible components of rhythmic abilities, such as processing of single temporal intervals, rhythmic patterns, a regular beat or hierarchical metrical structures. For future research, we suggest a careful choice of paradigm to aid cross-species comparisons, and a critical consideration of the multifaceted abilities that underlie rhythmic behaviour. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.Animal science

    Wavefronts, Caustic Sheets, and Caustic Surfing in Gravitational Lensing

    Full text link
    Very little attention has been paid to the properties of optical wavefronts and caustic surfaces due to gravitational lensing. Yet the wavefront-based point of view is natural and provides insights into the nature of the caustic surfaces on a gravitationally lensed lightcone. We derive analytically the basic equations governing the wavefronts, lightcones, caustics on wavefronts, and caustic surfaces on lightcones in the context of weak-field, thin-screen gravitational lensing. These equations are all related to the potential of the lens. In the process, we also show that the standard single-plane gravitational lensing map extends to a new mapping, which we call a wavefront lensing map. Unlike the standard lensing map, the Jacobian matrix of a wavefront lensing map is not symmetric. Our formulas are then applied to caustic ``surfing.'' By surfing a caustic surface, a space-borne telescope can be fixed on a gravitationally lensed source to obtain an observation of the source at very high magnification over an extended time period, revealing structure about the source that could not otherwise be resolved. Using our analytical expressions for caustic sheets, we present a scheme for surfing a caustic sheet of a lensed source in rectilinear motion. Detailed illustrations are also presented of the possible types of wavefronts and caustic sheets due to nonsingular and singular elliptical potentials, and singular isothermal spheres, including an example of caustic surfing for a singular elliptical potential lens.Comment: To appear in J. Math. Phys., 31 pages, 15 figure

    Mathematics of Gravitational Lensing: Multiple Imaging and Magnification

    Full text link
    The mathematical theory of gravitational lensing has revealed many generic and global properties. Beginning with multiple imaging, we review Morse-theoretic image counting formulas and lower bound results, and complex-algebraic upper bounds in the case of single and multiple lens planes. We discuss recent advances in the mathematics of stochastic lensing, discussing a general formula for the global expected number of minimum lensed images as well as asymptotic formulas for the probability densities of the microlensing random time delay functions, random lensing maps, and random shear, and an asymptotic expression for the global expected number of micro-minima. Multiple imaging in optical geometry and a spacetime setting are treated. We review global magnification relation results for model-dependent scenarios and cover recent developments on universal local magnification relations for higher order caustics.Comment: 25 pages, 4 figures. Invited review submitted for special issue of General Relativity and Gravitatio

    Semi analytic approach to understanding the distribution of neutral hydrogen in the universe: Comparison of simulations with observations

    Get PDF
    Following Bi & Davidsen (1997), we perform one dimensional semi analytic simulations along the lines of sight to model the intergalactic medium (IGM). Since this procedure is computationally efficient in probing the parameter space -- and reasonably accurate -- we use it to recover the values of various parameters related to the IGM (for a fixed background cosmology) by comparing the model predictions with different observations. For the currently favoured LCDM model (\Omega_m=0.4, \Omega_{\Lambda}=0.6 and h=0.65), we obtain, using statistics obtained from the transmitted flux, constraints on (i) the combination f=(\Omega_B h^2)^2/J_{-12}, where \Omega_B is the baryonic density parameter and J_{-12} is the total photoionisation rate in units of 10^{-12} s^{-1}, (ii) temperature T_0 corresponding to the mean density and (iii) the slope \gamma of the effective equation of state of the IGM at a mean redshift z \simeq 2.5. We find that 0.8 <(T_0/10^4 K)< 2.5 and 1.3<\gamma<2.3. while the constraint obtained on f is 0.020^2<f<0.032^2. A reliable lower bound on J_{-12} can be used to put a lower bound on \Omega_B h^2, which can be compared with similar constraints obtained from Big Bang Nucleosynthesis (BBN) and CMBR studies. We find that if J_{-12}>1.2, the lower bound on \Omega_B h^2 is in violation of the BBN value.Comment: Revised version; accepted for publication in Ap

    TreePM Method for Two-Dimensional Cosmological Simulations

    Full text link
    We describe the two-dimensional TreePM method in this paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle-Mesh method. We describe the splitting of force between the PM and the Tree parts. We also estimate error in force for a realistic configuration. Finally, we discuss some tests of the code.Comment: 12 pages, 3 figures, uses jaa.sty. To be submitted to JA
    corecore