59 research outputs found

    Digital Elevation Models: Terminology and Definitions

    Get PDF
    Digital elevation models (DEMs) provide fundamental depictions of the three-dimensional shape of the Earth’s surface and are useful to a wide range of disciplines. Ideally, DEMs record the interface between the atmosphere and the lithosphere using a discrete two-dimensional grid, with complexities introduced by the intervening hydrosphere, cryosphere, biosphere, and anthroposphere. The treatment of DEM surfaces, affected by these intervening spheres, depends on their intended use, and the characteristics of the sensors that were used to create them. DEM is a general term, and more specific terms such as digital surface model (DSM) or digital terrain model (DTM) record the treatment of the intermediate surfaces. Several global DEMs generated with optical (visible and near-infrared) sensors and synthetic aperture radar (SAR), as well as single/multi-beam sonars and products of satellite altimetry, share the common characteristic of a georectified, gridded storage structure. Nevertheless, not all DEMs share the same vertical datum, not all use the same convention for the area on the ground represented by each pixel in the DEM, and some of them have variable data spacings depending on the latitude. This paper highlights the importance of knowing, understanding and reflecting on the sensor and DEM characteristics and consolidates terminology and definitions of key concepts to facilitate a common understanding among the growing community of DEM users, who do not necessarily share the same backgroun

    Digital Elevation Models: Terminology and Definitions

    Get PDF
    Digital elevation models (DEMs) provide fundamental depictions of the three-dimensional shape of the Earth’s surface and are useful to a wide range of disciplines. Ideally, DEMs record the interface between the atmosphere and the lithosphere using a discrete two-dimensional grid, with complexities introduced by the intervening hydrosphere, cryosphere, biosphere, and anthroposphere. The treatment of DEM surfaces, affected by these intervening spheres, depends on their intended use, and the characteristics of the sensors that were used to create them. DEM is a general term, and more specific terms such as digital surface model (DSM) or digital terrain model (DTM) record the treatment of the intermediate surfaces. Several global DEMs generated with optical (visible and near-infrared) sensors and synthetic aperture radar (SAR), as well as single/multi-beam sonars and products of satellite altimetry, share the common characteristic of a georectified, gridded storage structure. Nevertheless, not all DEMs share the same vertical datum, not all use the same convention for the area on the ground represented by each pixel in the DEM, and some of them have variable data spacings depending on the latitude. This paper highlights the importance of knowing, understanding and reflecting on the sensor and DEM characteristics and consolidates terminology and definitions of key concepts to facilitate a common understanding among the growing community of DEM users, who do not necessarily share the same background

    An interlaboratory comparison of mid-infrared spectra acquisition: Instruments and procedures matter

    Get PDF
    Diffuse reflectance spectroscopy has been extensively employed to deliver timely and cost-effective predictions of a number of soil properties. However, although several soil spectral laboratories have been established worldwide, the distinct characteristics of instruments and operations still hamper further integration and interoperability across mid-infrared (MIR) soil spectral libraries. In this study, we conducted a large-scale ring trial experiment to understand the lab-to-lab variability of multiple MIR instruments. By developing a systematic evaluation of different mathematical treatments with modeling algorithms, including regular preprocessing and spectral standardization, we quantified and evaluated instruments' dissimilarity and how this impacts internal and shared model performance. We found that all instruments delivered good predictions when calibrated internally using the same instruments' characteristics and standard operating procedures by solely relying on regular spectral preprocessing that accounts for light scattering and multiplicative/additive effects, e.g., using standard normal variate (SNV). When performing model transfer from a large public library (the USDA NSSC-KSSL MIR library) to secondary instruments, good performance was also achieved by regular preprocessing (e.g., SNV) if both instruments shared the same manufacturer. However, significant differences between the KSSL MIR library and contrasting ring trial instruments responses were evident and confirmed by a semi-unsupervised spectral clustering. For heavily contrasting setups, spectral standardization was necessary before transferring prediction models. Non-linear model types like Cubist and memory-based learning delivered more precise estimates because they seemed to be less sensitive to spectral variations than global partial least square regression. In summary, the results from this study can assist new laboratories in building spectroscopy capacity utilizing existing MIR spectral libraries and support the recent global efforts to make soil spectroscopy universally accessible with centralized or shared operating procedures

    Designing clinical trials for assessing the effects of cognitive training and physical activity interventions on cognitive outcomes: The Seniors Health and Activity Research Program Pilot (SHARP-P) Study, a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The efficacy of non-pharmacological intervention approaches such as physical activity, strength, and cognitive training for improving brain health has not been established. Before definitive trials are mounted, important design questions on participation/adherence, training and interventions effects must be answered to more fully inform a full-scale trial.</p> <p>Methods</p> <p>SHARP-P was a single-blinded randomized controlled pilot trial of a 4-month physical activity training intervention (PA) and/or cognitive training intervention (CT) in a 2 × 2 factorial design with a health education control condition in 73 community-dwelling persons, aged 70-85 years, who were at risk for cognitive decline but did not have mild cognitive impairment.</p> <p>Results</p> <p>Intervention attendance rates were higher in the CT and PACT groups: CT: 96%, PA: 76%, PACT: 90% (p=0.004), the interventions produced marked changes in cognitive and physical performance measures (p≤0.05), and retention rates exceeded 90%. There were no statistically significant differences in 4-month changes in composite scores of cognitive, executive, and episodic memory function among arms. Four-month improvements in the composite measure increased with age among participants assigned to physical activity training but decreased with age for other participants (intervention*age interaction p = 0.01). Depending on the choice of outcome, two-armed full-scale trials may require fewer than 1,000 participants (continuous outcome) or 2,000 participants (categorical outcome).</p> <p>Conclusions</p> <p>Good levels of participation, adherence, and retention appear to be achievable for participants through age 85 years. Care should be taken to ensure that an attention control condition does not attenuate intervention effects. Depending on the choice of outcome measures, the necessary sample sizes to conduct four-year trials appear to be feasible.</p> <p>Trial Registration</p> <p>Clinicaltrials.gov Identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00688155">NCT00688155</a></p

    The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges

    Full text link
    • …
    corecore