59 research outputs found

    Observation of enhanced subthreshold K+ production in central collisions between heavy nuclei

    Get PDF
    In the very heavy collision system 197Au+197Au the K+ production process was studied as a function of impact parameter at 1 GeV/nucleon, a beam energy well below the free N-N threshold. The K+ multiplicity increases more than linearly with the number of participant nucleons and the K+/ pi + ratio rises significantly when going from peripheral to central collisions. The measured K+ double differential cross section is enhanced by a factor of 6 compared to microscopic transport calculations if secondary processes (Delta N-->K Lambda N and Delta Delta -->K Lambda N) are ignored

    Polarization of Λ and ¯Λ hyperons along the beam direction in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The polarization of the Λ and Λ¯¯¯¯ hyperons along the beam (z) direction, Pz, has been measured in Pb-Pb collisions at sNN−−−√ = 5.02TeV recorded with ALICE at the Large Hadron Collider (LHC). The main contribution to Pz comes from elliptic flow induced vorticity and can be characterized by the second Fourier sine coefficient Pz,s2=⟨Pzsin(2φ−2Ψ2)⟩, where φ is the hyperon azimuthal emission angle, and Ψ2 is the elliptic flow plane angle. We report the measurement of Pz,s2 for different collision centralities, and in the 30-50% centrality interval as a function of the hyperon transverse momentum and rapidity. The Pz,s2 is positive similarly as measured by the STAR Collaboration in Au-Au collisions at sNN−−−√ = 200 GeV, with somewhat smaller amplitude in the semi-central collisions. This is the first experimental evidence of a non-zero hyperon Pz in Pb-Pb collisions at the LHC. The comparison of the measured Pz,s2 with the hydrodynamic model calculations shows sensitivity to the competing contributions from thermal and the recently found shear induced vorticity, as well as to whether the polarization is acquired at the quark-gluon plasma or the hadronic phase

    Jet fragmentation transverse momentum distributions in pp and p–Pb collisions at √sNN = 5.02 TeV

    No full text
    Jet fragmentation transverse momentum (jT) distributions are measured in proton-proton (pp) and proton-lead (p-Pb) collisions at sNN−−−√ = 5.02 TeV with the ALICE experiment at the LHC. Jets are reconstructed with the ALICE tracking detectors and electromagnetic calorimeter using the anti-kT algorithm with resolution parameter R=0.4 in the pseudorapidity range |η|<0.25. The jT values are calculated for charged particles inside a fixed cone with a radius R=0.4 around the reconstructed jet axis. The measured jT distributions are compared with a variety of parton-shower models. Herwig and PYTHIA 8 based models describe the data well for the higher jT region, while they underestimate the lower jT region. The jT distributions are further characterised by fitting them with a function composed of an inverse gamma function for higher jT values (called the "wide component"), related to the perturbative component of the fragmentation process, and with a Gaussian for lower jT values (called the "narrow component"), predominantly connected to the hadronisation process. The width of the Gaussian has only a weak dependence on jet transverse momentum, while that of the inverse gamma function increases with increasing jet transverse momentum. For the narrow component, the measured trends are successfully described by all models except for Herwig. For the wide component, Herwig and PYTHIA 8 based models slightly underestimate the data for the higher jet transverse momentum region. These measurements set constraints on models of jet fragmentation and hadronisation

    Energy dependence of φ meson production at forward rapidity in pp collisions at the LHC

    No full text
    The production of ϕ mesons has been studied in pp collisions at LHC energies with the ALICE detector via the dimuon decay channel in the rapidity region 2.5<y<4. Measurements of the differential cross section d2σ/dydpT are presented as a function of the transverse momentum (pT) at the center-of-mass energies s√=5.02, 8 and 13 TeV and compared with the ALICE results at midrapidity. The differential cross sections at s√=5.02 and 13 TeV are also studied in several rapidity intervals as a function of pT, and as a function of rapidity in three pT intervals. A hardening of the pT-differential cross section with the collision energy is observed, while, for a given energy, pT spectra soften with increasing rapidity and, conversely, rapidity distributions get slightly narrower at increasing pT. The new results, complementing the published measurements at s√=2.76 and 7 TeV, allow one to establish the energy dependence of ϕ meson production and to compare the measured cross sections with phenomenological models. None of the considered models manages to describe the evolution of the cross section with pT and rapidity at all the energies

    Measurement of the groomed jet radius and momentum splitting fraction in pp and Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    This article presents groomed jet substructure measurements in pp and Pb−Pb collisions at sNN−−−√=5.02 TeV with the ALICE detector. The Soft Drop grooming algorithm provides access to the hard parton splittings inside a jet by removing soft wide-angle radiation. We report the groomed jet momentum splitting fraction, zg, and the (scaled) groomed jet radius, θg. Charged-particle jets are reconstructed at midrapidity using the anti-kT algorithm with resolution parameters R=0.2 and R=0.4. In heavy-ion collisions, the large underlying event poses a challenge for the reconstruction of groomed jet observables, since fluctuations in the background can cause groomed parton splittings to be misidentified. By using strong grooming conditions to reduce this background, we report these observables fully corrected for detector effects and background fluctuations for the first time. A narrowing of the θg distribution in Pb−Pb collisions compared to pp collisions is seen, which provides direct evidence of the modification of the angular structure of jets in the quark−gluon plasma. No significant modification of the zg distribution in Pb−Pb collisions compared to pp collisions is observed. These results are compared with a variety of theoretical models of jet quenching, and provide constraints on jet energy-loss mechanisms and coherence effects in the quark−gluon plasma

    Jet-hadron correlations measured relative to the second order event plane in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    The Quark Gluon Plasma (QGP) produced in ultra relativistic heavy-ion collisions at the Large Hadron Collider (LHC) can be studied by measuring the modifications of jets formed by hard scattered partons which interact with the medium. We studied these modifications via angular correlations of jets with charged hadrons for jets with momenta 20 < pjetT < 40 GeV/c as a function of the associated particle momentum. The reaction plane fit (RPF) method is used in this analysis to remove the flow modulated background. The analysis of angular correlations for different orientations of the jet relative to the second order event plane allows for the study of the path length dependence of medium modifications to jets. We present the dependence of azimuthal angular correlations of charged hadrons with respect to the angle of the axis of a reconstructed jet relative to the event plane in Pb-Pb collisions at sNN−−−√ = 2.76 TeV. The dependence of particle yields associated with jets on the angle of the jet with respect to the event plane is presented. Correlations at different angles relative to the event plane are compared through ratios and differences of the yield. No dependence of the results on the angle of the jet with respect to the event plane is observed within uncertainties, which is consistent with no significant path length dependence of the medium modifications for this observable
    corecore