11 research outputs found
Examination on the efficacy of spraying operations in vine plantations
Our investigation was to conduct the measurement of spray losses and efficacy using an air-carrier sprayer in
situ, that is during the practical work to get reliable scientific data to the common practice in vine plantation.
During the end of April to mid August six measurements were taken depending on the developmental stage
of vine stocks. To determine the degree of chemical deposition and spray losses, leaf samples were taken, or
rough-surface plastic sheets and petri-dishes were used. As a tracer Pyranin-solution were used the deposited
active substance of samples were determined in a laboratory using a fluorometer. To measure the chemical’s
deposition on the upper and lower surfaces of the leaves, water-sensitive test papers were placed onto
assigned leaves at each levels. They were evaluated using a computerized image analysis. The evaluation of
relations between developmental stage and efficacy of sprayings showed, that the amount of liquid sprayed
onto the target surface (that is the foliage) as well as the value of recovery, will mainly be determined by the
LAI, which shows the development of the foliage. The recovery values of 55-60 % is considered in the
literature as a basis for comparisons, and is in case of traditional axial fan sprayers only acceptable and true,
if the foliage is very well developed
Fényérzékeny molekulák és fotoreceptorok a gerincesek retinájában és tobozmirigyében = Photosensitive molecules and photoreceptors in the vertebrate retina and pineal gland
Míg az emlősök legtöbbjében, amelyekben legalább kétféle színérzékenységű fotoreceptor található, kimutatható a transzdifferenciáció, vagyis a rövidhullám-érzékeny (kék) csapok korai megjelenése, és ezek egy részében a középhullám-érzékeny (zöld) pigment későbbi expressziója. Az eredeti kék pigment eltűnése eredményezi a definitív zöld csapokat, míg azok, amelyekben a zöld pigment egyáltalán nem jelenik meg, adják a kék csap-populációt. Elvetettük a hipotézist, hogy a monokromatikus fajokan is a kék-pigment expresszióján keresztül vezet az út. Felnőttben is előfordulnak két pigmentet tartalmazó csapok. A transzdifferenciáció (csap-fejlődés) nem áll meg újszülött korban, hanem folytatódik felnőttben is. Ezek idegi őssejtek, amelyek a retina regenerációjában játszhatnak szerepet (anti-PCNA). A csapok differenciálódásában közrejátszó tényezők közül a BDNF, az NT-3 és a TrkB szerepet játszanak a kék-zöld átalakulásban. Tenyésztés és immuncitokémia bizonyítja, hogy a kék csapok fejlődéséhez elegendő a megfelelő feltételek fennállása. A zöld csapok megjelenéséhez azonban az említett tényezők is szükségesek. A nem-vizuális fotoreceptorok feladata a diurnális ritmus beállítása. A bennük lévő cryptochromok kék-érzékenyek. Az ékszakai megvilágítás patológiás hatásait (emlőrák, colorectalis tumorok, stb.) a pineális melatonin gátlása okozza. Ezek redukálhatók kék fény-mentes megvilágítással, azaz megfelelő színszűrők használatával. | In mammals that possess two color-specific photoreceptors, transdifferentiation is present. That means the early appearance of short wave (blue) cones and the later expression of middle wave (green) pigment in some of them. The disappearance of the original blue pigment results in the development of definitive green cones. Those in which no green pigment appears at all will make the blue cone population. The hypothesis that in monochromatic species green cones come about through the transitory appearance of blue pigment has been rejected. Dual cones expressing two visual pigments occur also in adults. Obviously, the transdifferentiation does not come to an end in the early postnatal period, rather it goes on in the adulthood. These might be neuronal stem cells playing a role in the regeneration of the retina (anti-PCNA). Of the factors having a role in the cone differentiation, BDNF, NT-3 and TrkB seem to be effective in the blue-green transition. Immunocytochemistry and tissue culture prove that proper culture technique is enough for the development of blue cones, however the above factors are indispensable for the green cones. Non-visual photoreceptors play a role in the entrainment of the diurnal clock. Their cryptochromes proved to be blue-sensitive. The pathologic effects of night work are attributed to the inhibition of pineal melatonin. The adverse reactions might be reduced with blue light-free illumination, with proper color filters
Examination on the efficacy of spraying operations in vine plantations
Our investigation was to conduct the measurement of spray losses and efficacy using an air-carrier sprayer in situ, that is during the practical work to get reliable scientific data to the common practice in vine plantation. During the end of April to mid August six measurements were taken depending on the developmental stage of vine stocks. To determine the degree of chemical deposition and spray losses, leaf samples were taken, or rough-surface plastic sheets and petri-dishes were used. As a tracer Pyranin-solution were used the deposited active substance of samples were determined in a laboratory using a fluorometer. To measure the chemical’s deposition on the upper and lower surfaces of the leaves, water-sensitive test papers were placed onto assigned leaves at each levels. They were evaluated using a computerized image analysis. The evaluation of relations between developmental stage and efficacy of sprayings showed, that the amount of liquid sprayed onto the target surface (that is the foliage) as well as the value of recovery, will mainly be determined by the LAI, which shows the development of the foliage. The recovery values of 55-60 % is considered in the literature as a basis for comparisons, and is in case of traditional axial fan sprayers only acceptable and true, if the foliage is very well developed
Long-term field fertilization experiment with energy willow (Salix sp.) − Elemental composition and chlorophyll fluorescence in the leaves
A small-plot long-term field fertilization experiment was set up in 2011 with willow (Salix triandra x Salix viminalis ’Inger’) grown as an energy crop in Nyíregyháza, Hungary. The brown forest soil was treated three times (in June 2011, May 2013, May 2016) with municipal biocompost (MBC), municipal sewage sludge compost (MSSC) or willow ash (WA), and twice (June 2011, May 2013) with rhyolite tuff (RT). In late May – early June 2016 urea (U) and sulphuric urea (SU) fertilizers were also applied to the soil as top-dressing (TD). These fertilizers and amendments were also applied to the soil in 2016 in the combinations; MBC+SU, RT+SU, WA+SU and MSSC+WA. All the treatments were repeated four times. In July 2016 the highest nitrogen concentrations in willow leaves were measured in the U (3.47 m/m%) and SU (3.01 m/m%) treatments, and these values were significantly higher than the control (2.46 m/m%). An excess of nitrogen considerably reduced the Zn uptake of the leaves, with values of 39.5 μg g-1 in the U treatment, 53.4 μg g-1 in the SU treatment, and 63.5 μg g-1 in the control. All other amendments or TDs, except for WA, enhanced the specific potassium concentrations in willow leaves compared to the control. No significant quantities of toxic elements (As, Ba, Cd, Pb) were transported from soil amendments or TDs to the willow leaves. In July 2016 the most intensive leaf chlorophyll fluorescence was observed in the MSSC and MSSC+WA treatments
Actual problems of the cerebrospinal fluid-contacting neurons.
Cerebrospinal fluid (CSF)-contacting neurons form a part of the circumventricular organs of the central nervous system. Represented by different cytologic types and located in different regions, they constitute a CSF-contacting neuronal system, the most central periventricular ring of neurons in the brain organized concentrically according to our concept. Because the central nervous system of deuterostomian echinoderm starfishes and the prochordate lancelet is composed mainly of CSF-contacting-like neurons, we hypothesize that this cell type represents ancient cells, or protoneurons, in the vertebrate brain. Neurons may contact the ventricular CSF via their dendrites, axons, or perikarya. Most of the CSF-contacting nerve cells send their dendritic processes into the ventricular cavity, where they form ciliated terminals. These ciliated endings resemble those of known sensory cells. By means of axons, the CSF-contacting neurons also may contact the external CSF space, where the axons form terminals of neurohormonal type similar to those known in the neurohemal areas. The most simple CSF-contacting neurons of vertebrates are present in the terminal filum, spinal cord, and oblongate medulla. The dendritic pole of these medullospinal CSF-contacting neurons terminates with an enlargement bearing many stereocilia in the central canal. These cells are also supplied with a 9 x 2 + 2 kinocilium that may contact Reissner's fiber, the condensed secretory material of the subcommissural organ. The Reissner's fiber floating freely in the CSF leaves the central canal at the caudal open end of the terminal filum in lower vertebrates, and open communication is thus established between internal CSF and the surrounding tissue spaces. Resembling mechanoreceptors cytologically, the spinal CSF-contacting neurons send their axons to the outer surface of the spinal cord to form neurosecretory-type terminals. They also send collaterals to local neurons and to higher spinal segments. In the hypothalamic part of the diencephalon, neurons of two circumventricular organs, the paraventricular organ and the vascular sac, of the magnocellular neurosecretory nuclei and several parvocellular nuclei, form CSF-contacting dendritic terminals. A CSF-contacting neuronal area also was found in the telencephalon. The CSF-contacting dendrites of all these areas bear solitary 9 x 2 + 0 cilia and resemble chemoreceptors and developing photoreceptors cytologically. In electrophysiological experiments, the neurons of the paraventricular organ are highly sensitive to the composition of the ventricular CSF. The axons of the CSF-contacting neurons of the paraventricular organ and hypothalamic nuclei terminate in hypothalamic synaptic zones, and those of magno- and parvocellular neurosecretory nuclei also form neurohormonal terminals in the median eminence and neurohypophysis. The axons of the CSF-contacting neurons of the vascular sac run in the nervus and tractus sacci vasculosi to the nucleus (ganglion) sacci vasculosi. Some hypothalamic CSF-contacting neurons contain immunoreactive opsin and are candidates to represent the "deep encephalic photoreceptors." In the newt, cells derived from the subependymal layer develop photoreceptor outer segments protruding to the lumen of the infundibular lobe under experimental conditions. Retinal and pineal photoreceptors and some of their secondary neurons possess common cytologic features with CSF-contacting neurons. They contact the retinal photoreceptor space and pineal recess, respectively, both cavities being derived from the third ventricle. In addition to ciliated dendritic terminals, there are intraventricular axons and neuronal perikarya contacting the CSF. Part of the CSF-contacting axons are serotoninergic; their perikarya are situated in the raphe nuclei. Intraventricular axons innervate the CSF-contacting dendrites, intraventricular nerve cells, and/or the ventricular surface of the ependyma. (ABSTRACT TRUNCATED