8 research outputs found

    Rock magnetic techniques complemented by ferromagnetic resonance spectroscopy to analyse a sediment record

    Get PDF
    Environmental magnetism uses the spatial and temporal occurrence of magnetic carriers as diagnostic tools to detect environmental changes. Concentration, composition, grain size and configuration of the carriers inferred from magnetic properties are key parameters, because they are indicative of the formation conditions of magnetic phases, and/or of processes such as diagenesis and weathering. We present a detailed ferromagnetic resonance (FMR) spectroscopy analysis in concert with routinely used rock magnetic measurements to determine these parameters in a sediment record that documents the development of Lake Soppensee (Central Switzerland) since latest Pleistocene. FMR spectroscopy monitors varying concentration of the predominant magnetite/maghemite by the spectral signal intensity, whereas the stable single domain and superparamagnetic states are determined by the signal shape at room and low temperature. Fitting and simulation of FMR spectra are successfully applied to samples with well-defined magnetite components in the sediment matrix. Clear evidence for the colonization of magnetotactic bacteria (MTB) in Lake Soppensee was possible by applying empirical spectral separation to measured FMR signals that yield two magnetite populations differing in their configuration, that is, dispersed and aligned in chains. Low temperature measurements showed that these MTB can be preserved as pure or oxidized magnetite. The FMR data set confirms and completes rock magnetic information obtained from the lacustrine sedimentary record. The advanced application of FMR spectroscopy in the presented study critically highlights the benefit of this rapid and non-destructive method for future analysis of magnetic properties in environmental studie

    High-resolution late-glacial chronology for the Gerzensee lake record (Switzerland): δ18O correlation between a Gerzensee-stack and NGRIP

    No full text
    Oxygen-isotope variations were analyzed on bulk samples of shallow-water lake marl from Gerzensee, Switzerland, in order to evaluate major and minor climatic oscillations during the late-glacial. To highlight the overall signature of the Gerzensee δ18O record, δ18O records of four parallel sediment cores were first correlated by synchronizing major isotope shifts and pollen abundances. Then the records were stacked with a weighting depending on the differing sampling resolution. To develop a precise chronology, the δ18O-stack was then correlated with the NGRIP δ18O record applying a Monte Carlo simulation, relying on the assumption that the shifts in δ18O were climate-driven and synchronous in both archives. The established chronology on the GICC05 time scale is the basis for (1) comparing the δ18O changes recorded in Gerzensee with observed climatic and environmental fluctuations over the whole North Atlantic region, and (2) comparing sedimentological and biological changes during the rapid warming with smaller climatic variations during the Bølling/Allerød period. The δ18O record of Gerzensee is characterized by two major isotope shifts at the onset and at the termination of the Bølling/Allerød warm period, as well as four intervening negative shifts labeled GI-1e2, d, c2, and b, which show a shift of one third to one fourth of the major δ18O shifts at the beginning and end of the Bølling/Allerød. Despite some inconsistency in terminology, these oscillations can be observed in various climatic proxies over wide regions in the North Atlantic region, especially in reconstructed colder temperatures, and they seem to be caused by hemispheric climatic variations

    Late-Holocene climate variability and ecosystem responses in Alaska inferred from high-resolution multiproxy sediment analyses at Grizzly Lake

    No full text
    The late-Holocene shift from Picea glauca (white spruce) to Picea mariana (black spruce) forests marked the establishment of modern boreal forests in Alaska. To understand the patterns and drivers of this vegetational change and the associated late-Holocene environmental dynamics, we analyzed radiocarbon-dated sediments from Grizzly Lake for chironomids, diatoms, pollen, macrofossils, charcoal, element composition, particle size, and magnetic properties for the period 4100–1800 cal BP. Chironomid assemblages reveal two episodes of decreased July temperature, at ca. 3300–3150 (ca −1 °C) and 2900–2550 cal BP (ca −2 °C). These episodes coincided with climate change elsewhere in the Northern Hemisphere, atmospheric reorganization, and low solar activity. Diatom-inferred lake levels dropped by ca. 5 m at 3200 cal BP, suggesting dry conditions during the period 3200–1800 cal BP. P. glauca declined and P. mariana expanded at ca. 3200 cal BP; this vegetational change was linked to diatom-inferred low lake levels and thus decreased moisture availability. Forest cover declined at 3300–3100, 2800–2500 and 2300–2100 cal BP and soil erosion as inferred from increased values of Al, K, Si, Ti, and Ca intensified, when solar irradiance was low. Plant taxa adapted to disturbance and cold climate (e.g. Alnus viridis, shrub Betula, Epilobium) expanded during these periods of reduced forest cover. This open vegetation type was associated with high fire activity that peaked at 2800 cal BP, when climatic conditions were particularly cold and dry. Forest recovery lagged behind subsequent climate warming (≤+3 °C) by ca. 75–225 years. Our multiproxy data set suggests that P. glauca was dominant under warm-moist climatic conditions, whereas P. mariana prevailed under cold-dry and warm-dry conditions. This pattern implies that climatic warming, as anticipated for this century, may promote P. glauca expansions, if moisture availability will be sufficiently high, while P. mariana may expand under dry conditions, possibly exacerbating climate impacts on the fire regime
    corecore