69 research outputs found

    \u3ci\u3eIn Situ\u3c/i\u3e Measurement of Three-Dimensional Ion Densities in Focused Femtosecond Pulses

    Get PDF
    We image spatial distributions of Xeq+ ions in the focus of a laser beam of ultrashort, intense pulses in all three dimensions, with a resolution of ~3μm and ~12 μm in the two transverse directions. This allows for studying ionization processes without spatially averaging ion yields. Our in situ ion imaging is also useful to analyze focal intensity profiles and to investigate the transverse modal purity of tightly focused beams of complex light. As an example, the intensity profile of a Hermite-Gaussian beam mode HG1,0 recorded with ions is found to be in good agreement with optical images

    Imaging of Alignment, Deformation and Dissociation of CS2 Molecules using Ultrafast Electron Diffraction

    Get PDF
    Imaging the structure of molecules in transient excited states remains a challenge due to the extreme requirements for spatial and temporal resolution. Ultrafast electron diffraction from aligned molecules (UEDAM) provides atomic resolution and allows for the retrieval of structural information without the need to rely on theoretical models. Here we use UEDAM and femtosecond laser mass spectrometry (FLMS) to investigate the dynamics in carbon disulfide (CS2) following the interaction with an intense femtosecond laser pulse. We have retrieved images of ground state and excited molecules with 0.03 {\AA} precision. We have observed that the degree of alignment reaches an upper limit at laser intensities below the ionization threshold, and found evidence of structural deformation, dissociation, and ionization at higher laser intensities

    Creation of optical vortices in femtosecond pulses

    Get PDF
    We experimentally created a femtosecond optical vortex using a pair of computer-synthesized holographic gratings arranged in a 2f - 2f optical setup. We present measurements showing that the resulting donut mode is free of spatial chirp, and support this finding with an analysis of the optical wave propagation through our system based on the Kirchhoff- Fresnel diffraction integral. An interferogram confirms that our ultrashort vortex has topological charge 1, and a conservative experimental estimation of its duration is 280 fs. We used 25-fs radiation pulses (bandwidth approximately 40 nm) produced by a Ti:sapphire laser oscillator

    Intense-Field Photoionization of Molecules using Ultrashort Radiation Pulses: REMPI in Toluene, Aniline, Phenol, and Fluorobenzene

    Get PDF
    We investigate the intense-field photodynamics of molecules using 50-fs pulses with intensities of 1012 to 1014 W/cm2 at 800-nm from a Ti:sapphire laser. We use a mass spectrometer that avoids focal intensity averaging. We have investigated the isoelectronic target molecules toluene (C6H5-CH3), aniline (C6H5-NH2), phenol (C6H5-OH), and fluorobenzene (C6H5-F). We discuss a resonance-enhanced multiphoton ionization (REMPI) mechanism that includes the AC Stark shifts of the molecular states. We have also investigated CO2 and CS2. For these molecules, no resonance effects are observed

    Imaging of alignment and structural changes of carbon disulfide molecules using ultrafast electron diffraction

    Get PDF
    Imaging the structure of molecules in transient-excited states remains a challenge due to the extreme requirements for spatial and temporal resolution. Ultrafast electron diffraction from aligned molecules provides atomic resolution and allows for the retrieval of structural information without the need to rely on theoretical models. Here we use ultrafast electron diffraction from aligned molecules and femtosecond laser mass spectrometry to investigate the dynamics in carbon disulfide following the interaction with an intense femtosecond laser pulse. We observe that the degree of alignment reaches an upper limit at laser intensities below the ionization threshold, and find evidence of structural deformation, dissociation and ionization at higher laser intensities

    Multiphoton ionization of V, Cr, Y, La, and Ir through 0.5-ps ultraviolet laser pulses

    Get PDF
    The two-photon ionization of the metal atoms V, Cr, Y, La, and Ir sputtered by an Ar-ion gun from solid targets has been investigated using linearly polarized laser pulses of 500- fs duration and 248.6-nm (KrF) wavelength in combination with mass spectroscopy that is free of volume effects. A near-resonant ionization process has to be attributed to all five atoms. By fitting analytical solutions of a rate equation model describing the temporal evolution of the ionization process, we can determine absolute values of the one-photon cross sections and saturation intensities

    Analysis of multiphoton ionization of metal atoms in the saturation regime using subpicosecond KrF laser pulses

    Get PDF
    Singly and multiply charged ion yield curves are reported for resonant and nonresonant two photon- ionization processes for a collection of 31 metal atoms. The atoms are created by sputtering from a solid target using an Ar-ion gun. Single and multiple ionization of these atoms is performed using linearly polarized 248.6-nm (KrF) laser pulses with a full width at half maximum duration of 500 fs, employing intensities between 109 and 1012 W cm-2. A four-grid high-resolution reflecting time-of-flight spectrometer is used for ion detection. This advanced spectrometer has a well-defined and small source volume, enabling absolute measurements of ionization probabilities and saturation intensities. Because our measurements are not affected by the increase of the interaction volume for increasing intensities, we can discriminate between resonant and nonresonant multiphoton ionization processes without varying the laser pulse duration. For many metals, the intensity dependence of the ion yield can be accurately reproduced by rate calculations based on a resonantly enhanced two-photon-ionization scheme. As a result, we can determine absolute values of the one-photon cross sections in the resonant processes and these are compared to theoretical values we calculated. For the nonresonant processes, we give generalized multiphoton-ionization cross sections and compare these to a scaling law of Lambropoulos [J. Opt. Soc. Am. B 4, 821 (1987)]

    Ultrafast REMPI in benzene and the monohalobenzenes without the focal volume effect

    Get PDF
    We report on the photoionization and photofragmentation of benzene (C6H6) and of the monohalobenzenes C6H5–X (X = F, Cl, Br, I) under intense-field, single-molecule conditions. We focus 50-fs, 804-nm pulses from a Ti:sapphire laser source, and record ion mass spectra as a function of intensity in the range ~1013 W/cm2 to ~1015 W/cm2. We count ions that were created in the central, most intense part of the focal area; ions from other regions are rejected. For all targets, stable parent ions (C6H5X+) are observed. Our data is consistent with resonance-enhanced multiphoton ionization (REMPI) involving the neutral 1ππ* excited state (primarily a phenyl excitation): all of our plots of parent ion yield versus intensity display a kink when this excitation saturates. From the intensity dependence of the ion yield we infer that both the HOMO and the HOMO-1 contribute to ionization in C6H5F and C6H5Cl. The proportion of phenyl (C6H5) fragments in the mass spectra increases in the order X = F, Cl, Br, I. We ascribe these substituent-dependent observations to the different lifetimes of the C6H5X 1ππ* states. In X = I the heavy-atom effect leads to ultrafast intersystem crossing to a dissociative 3nσ* state. This breaks the C–I bond in an early stage of the ultrashort pulse, which explains the abundance of fragments that we find in the iodobenzene mass spectrum. For the lighter X = F, Cl, and Br this dissociation is much slower, which explains the lesser degree of fragmentation observed for these three molecules

    Laser-induced ultrafast electron emission from a field emission tip

    Get PDF
    We show that a field emission tip electron source that is triggered with a femtosecond laser pulse can generate electron pulses shorter than the laser pulse duration (100&#; fs). The emission process is sensitive to a power law of the laser intensity, which supports an emission mechanism based on multiphoton absorption followed by over-the-barrier emission. Observed continuous transitions between power laws of different orders are indicative of field emission processes. We show that the source can also be operated so that thermionic emission processes become significant. Understanding these different emission processes is relevant for the production of sub-cycle electron pulses

    Excess Early Postnatal Weight Gain Leads to Increased Abdominal Fat in Young Children

    Get PDF
    Background. Increased childhood weight gain has been associated with later adiposity. Whether excess early postnatal weight gain plays a role in childhood abdominal fat is unknown. Design. In the ongoing Wheezing Illnesses Study Leidsche Rijn (WHISTLER), birth cohort weight and length from birth to age 3 months were obtained. In the first 316 five-year-olds, intra-abdominal and subcutaneous fat were measured ultrasonographically. Individual weight and length gain rates were assessed in each child. Internal Z-scores of weight for length gain (WLG) were calculated. Multiple imputation was used to deal with missing covariates. Results. Per-1-unit increase in Z-score WLG from birth to 3 months, BMI, waist circumference, and subcutaneous fat were significantly higher; 0.51 kg/m2, 0.84 cm, and 0.50 mm, respectively. After multiple imputation, a trend towards significance was observed for intra-abdominal fat as well (0.51 mm/SD). In the associations with 5-year adiposity, no interaction between postnatal Z-score WLG and birth size was found. Conclusion. Excess early postnatal weight gain is associated with increased general and central adiposity, characterized by more subcutaneous and likely more intra-abdominal fat at 5 years of age
    corecore