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Creation of optical vortices in femtosecond 
pulses 

I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uitenvaal 
Deportment ofPhysics & Astronomy, The University (jfNehrusku-Lincoln, 

Behlen Lob - City Compzcs, Lincoln, NE 68588-0111 
in1orivenko3@,unl. edu , cuiterwool2 @,unl. edzt 

Abstract: We experimentally created a femtosecond optical vortex using a 
pair of computer-synthesized holographic gratings arranged in a 2f - 2f 
optical setup. We present measurements showing that the resulting donut 
mode is free of spatial chirp, and support this finding with an analysis of the 
optical wave propagation through our system based on the Kirchhoff- 
Fresnel diffraction integral. An interferogram confirms that our ultrashort 
vortex has topological charge 1, and a conservative experimental estimation 
of its duration is 280 fs. We used 25-fs radiation pulses (bandwidth 
approximately 40 nm) produced by a Ti:sapphire laser oscillator. 

0 2005 Optical Society of America 

OCIS codes: (090.1760) Computer holography; (050.1590) Chirping; (050.1950) Diffraction 
gratings; (140.3300) Laser beam shaping; (320.7090) Ultrafast lasers; (999.9999) Optical 
vortices. 
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1. Introduction 

An optical vortex, as defined for a scalar electric field, is a singularity point where the 
amplitude vanishes and the phase is undetermined. The phase circulation around the 
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singularity point is an integer (m ) multiple of 27r [I]. This integer m is called the topological 
charge of the vortex. Laguerre-Gaussian modes [2,3], characterized by their two mode indices 
p (radial index) and C (azimuthal index) are well-known examples of radiation modes 
containing an optical vortex; they have topological charge m = & .  They typically consist of 
one or more concentric rings of intensity, with the vortex core located at the center, so that the 
intensity must vanish there. The archetypical Laguerre-Gaussian mode is the one with p = 0 
and C = 1 . Figure 1 shows the amplitude and phase in the waist of this mode. The intensity is 
located on a single ring, which explains why this mode is often nicknamed "donut mode". 

Fig. 1. Snapshot of the amplitude and phase of the scalar electric field u = lulexp(iarg(u)) in a 

transversal plane through the waist of a Laguerre-Gaussian mode with radial index p = 0 and 

azimuthal index f = 1 (donut mode). The axis of propagation z is perpendicular to the plane 
of the drawing, and passes through the center at (x,y) = (0,O). The brightness of the picture 

indicates the magnitude-squared amplitude lulZ of the field; the color indicates the phase angle 

arg(u) = -!'p according to the color strip on the right [ q = arctan(y1 x) is the azimuthal angle 
in the plane of the drawing 1. 

Our interest in this sort of mode stems from the fact that they possess optical orbital 
angular momentum. For instance, photons in a Laguerre-Gaussian mode carry an orbital 
angular momentum of Ch per photon [3]. Ultimately, our goal is to have strong ultrashort 
radiation pulses containing an optical vortex, so that we can investigate the influence of 
optical orbital angular momentum on intense-field ionization processes. We are motivated by 
what is known about the role of the photon's spin angular momentum. This manifests itself as 
the polarization of radiation, which is well known to affect intense-field ionization processes. 
Notable in this context are electron recollision processes [4], which play a crucial role in 
many currently exploited or investigated techniques to generate attosecond pulses [5]: 
electron recollision is more likely for linear than for circular polarization [6]. What role 
optical orbital angular momentum plays in intense field atomic processes is to the best of our 
knowledge experimentally unexplored territory. 

For ionization research in this area we need pulses that are both intense and ultrashort, and 
contain an optical vortex. The strategy we have chosen to create these is to first endow a weak 
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but ultrashort pulse with a vortex, and then to amplify it to the required energy level 
(mJ1pulse). In this paper, we report on the first step: creating a vortex in weak pulses of 
femtosecond duration. Femtosecond pulses naturally have a large bandwidth, so that none of 
the techniques reported to generate vortices in monochromatic (narrowband) light is suitable. 
A short overview of these techniques can be found in Ref. [7]. To the best of our knowledge, 
Ref. [7] is also the only paper published that presents an experimental realization of vortices 
in femtosecond laser fields. It seems, however, that the folded 4f setup employed by the 
authors of Ref. [7] leaves a role for parasitic reflections, which they mention as a 
complicating factor, and that the alignment of their setup is more critical than it is for ours. As 
a consequence, the intensity in the center of their resulting donut mode does not fall below 
20% of the intensity on the donut ring, while ideally the intensity has to vanish at the center 
because that is where the vortex core is located. In contrast, our present setup produces donut 
modes with a clean dark center (see Fig. 4(d) below) while still handling the large bandwidth 
of ultrashort pulses. 

This paper is organized as follows. In Sec. 2 we describe our experimental setup. This is 
followed in Sec. 3 by wavefront propagation calculations showing that our setup produces 
optical vortices of ultrashort duration. After that, in Sec. 4, we present experimentally 
recorded images and interferograms of our produced ultrashort vortex-containing donut 
modes, and an experimental estimation of their duration; this is followed by conclusions. 

Fig. 2. Computer-generated binary patterns based on Eq. (I),  for K = 2 a  . Each pattern 
consists of 1000 x 1000 pixels, with pixels for which T = 0 rendered black and T = 1 , white. 

Pattern (a) has no encoded vortex ( M=O in Eq. (1)). Pattern (b) has a single fringe 

bifurcation ( M = 1 ); when used as a hologram it gives rise to vortices with topological charge 
f 1 in the ffirst diffraction order. 

2. Setup 

The present technique is an adaptation of an already known holographic technique to create 
optical vortices in monochromatic laser light [8,9]. This technique uses binary transmission 
gratings defined by 

if sin(My7- Kx) 2 0 

if sin(My7 - Kx) < 0 . 
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Fig. 3. Schematic of our 2f - 2f setup (not to scale). Ultrashort pulses enter from the left, and 
then pass through the following optical elements: GI = line grating without vortex fingerprint 
(see inset); A = order-selecting aperture; L1 = planoconvex lens with focal length& G2 = 

grating with vortex fingerprint (see inset); L2 = same as L1. Diffraction orders (-1, 0, +1) are 
indicated as black numbers on a yellow background. The positions labeled with boxed 
lowercase letters (a . . . g) in light gray are used in our wavefront calculations (see Sec. 3). A 
few colored rays are shown to remind the reader that there is spatial chirp; white solid arrows 
indicate spatial chirp is absent. The artist's impressions on the right suggest the resulting far- 
field radiation: the +1 diffraction order from Gz gives a spatial-chup-free donut mode (white 
ring), while the -1 diffraction order suffers from spatial chirp. Note that we show just three 
colors-in reality, the frequency spectrum is of course continuous. 

with x and y Cartesian coordinates in the grating plane, p an azimuthal angle in the same 

plane (tan p = y 1 x ), and M an integer. The grating constant A is determined by 

K = 2 z I A .  Figure 2(b) shows a 1000 x 1000 pixel sampled version of such a binary pattern 
for M = 1 and K = 2 z  (so A = 1 ), with pixels with T = 0 rendered black, and pixels with 
T = 1 ,  white. The key feature of this class of gratings is their fringe bikcation 
(multifurcation) in the center: the top half of the pattern contains M more fringes than the 
bottom half. When such a grating is illuminated with a monochromatic wave having a 
Gaussian spatial profile, a superposition of Laguerre-Gaussian modes L G ~ = ' ~  ( l' is the 

azimuthal index) is produced in the f first diffraction order [lo]. The multifurcation in these 
gratings is thus the fingerprint of a vortex with topological charge M . Unfortunately, this 
single-grating method to generate optical vortices fails for broadband radiation (ultrashort 
pulses). In essence, each of the spectral components present in broadband radiation forms a 
good vortex in itself, but these vortices all travel in different lateral directions, because the 
diffraction angle is wavelength dependent. This phenomenon, known as angular dispersion 
(angular chirp), limits the focusability of the resulting radiation pulse, which is undesirable 
for intense-field applications. 

To bypass this adverse effect, our method of generating femtosecond vortices makes use 
of apair of gratings: one defined by Eq. (1) with M = 1 , which we will now label Gz, plus an 
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exact copy of it without the vortex fingerprint (so with M = 0) ,  which we label GI. This 
simple straight-line grating is shown in Fig. 2(a). We arrange the two gratings in a setup as 
shown in Fig. 3, letting the incoming optical pulse first pass through GI. Using an off-center 
aperture (marked A in Fig. 3) we only allow the +1 diffraction order to propagate. This order 
has angular chirp. A converging lens, L1, then focuses the optical wave on G2, which contains 
the vortex fingerprint. This lens with focal length f is positioned so that there is a distance of 
2f both between G1 and L1 and between L1 and G2. A second lens, L2, identical to L1, is 
positioned immediately behind G2. Having a linear magnification of -1, this telescope 
configuration allows us to preserve the beam collimation. Note that both L1 and L2 are 
centered on the optical axis, which also passes through the center of G2 (the origin in 
Fig. 2(b)). As the colored rays drawn in Fig. 3 suggest, the angular chirp appearing behind GI 
can be undone by refocusing the radiation on G2: each spectral component now approaches G2 
with precisely the angle required to make it coincide with the optical axis after diffraction by 
G2. As a result, a broadband optical vortex without angular chirp emerges from the setup on 
the optical axis behind G2. A strict mathematical proof of these statements based on the 
Kirchhoff-Fresnel diffraction integral formalism is presented in Sec. 3. 

To improve the efficiency of our setup we could have used phase holograms instead of 
transmission holograms. However, we decided to ignore this and other efficiency-related 
issues like blazing in this paper, as its purpose is merely to demonstrate the technique that 
creates ultrashort pulses with vortices. For the same reason, we also leave aside the issue of 
Laguerre-Gaussian mode purity [ l  11. 

3. Wavefront propagation 

In this section we wish to demonstrate theoretically that our setup (see Fig. 3) indeed 
produces a spatial-chirp-free optical vortex in an ultrashort pulse. We assume that an 
ultrashort pulse with a Gaussian spatial profile approaches the system in Fig. 3 from the left. 
We will follow the propagation of each monochromatic spectral component with wavenumber 
k separately, and find that the emerging wave is the same for all spectral components. To 
propagate the individual spectral components, we use the Kirchhoff-Fresnel integral 
formalism. Below, we use the subscripts a ... f to denote the wavefront at various positions 
in the setup; these positions are marked with the corresponding boxed lowercase letters in 
Fig. 3. In the calculations we refer to the coordinate system shown in Fig. 2 and used in Eq. 
(I), and take the z axis to coincide with the optical axis. 

To begin with, we have the incoming wave's electrical field with a Gaussian spatial 
profile of waist size w,, : 

Ea - exp [- $1 exp [- $1 . 

Because G I  is only modulated in the x direction and we have unit magnification, the 
wavefront immediately in front of G2 will have exactly the same y dependence. Thus, we 

will suppress all y -dependent factors in what follows, and concentrate on the propagation of 
the x -dependent factor (note that we can factorize the diffi-action integral). After passing G I  
the electric field in the first diffraction order acquires an extra phase factor; we find 

in which 27~1 K is the grating constant. This wave propagates over the distance 2f from GI to 
the lens LI, at which it arrives as 
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where k is the wavenumber, wC2 = wo2 (1 + (2 f I L,)') is the current waist size, 

Rc = 2 f + LR2 I 2  f is the current radius of the curvature, and the Rayleigh length is defined 

as L, = j k ~ , , ~  [2]. The center of the Gaussian envelope has been laterally displaced to 

x = (K 1 k)2f , and this is nothing else but angular chirp. The lens L1 then adds a quadratic 

phase exp[-ikx2 I 2J'] to the wave. Propagating further, the wavefront reaches G2, where its 

size is back to the initial value wo and its radius of curvature becomes J' : 

The exp[-iKx] phase component still indicates angular dispersion, but it has changed sign 
compared to E,, the wavefront just behind GI. Now the wave passes through G2, which has 
the same grating constant as GI,  but unlike GI also features a fringe bifurcation: its 
transmission T2(x, y) is given by Eq. (I), with M = 1 . The lens L2 compensates for the 
quadratic phase factor the beam acquired during propagation. Restoring the y -dependence 
that we have been suppressing in our notation thus far, we get 

This wave now propagates freely, causing the various diffraction orders to separate in the far 
field. For the NLh diffraction order, this free propagation involves a phase factor 

Equations (6) and (7) bring us to the central point of this paper: in the N = +1 diffraction 
order behind G2, a vortex with topological charge + 1 is expected, without angular dispersion. 
The phase factors exp(-iKx) in Eq. (6) and exp(+iKx) from Eq. (7) with N = + I  cancel, 

eliminating spatial chirp altogether. Note that in the N = -1 diffraction order the amount of 
spatial chirp is doubled instead of eliminated. In the next section, we present experimental 
images of the f 1 diffraction orders that exhibit exactly these features (Figs. 4(c)-(d) below). 

4. Experiment 

In our experiments, we used a Ti:sapphire oscillator (Spectra-Physics Tsunami) which 
produces pulses with a duration of -25 fs (bandwidth -40 nm, centered around -800 nm) 
when mode-locked. The average power emitted is -500 mW and the repetition rate is -75 
MHz; this corresponds to a pulse energy of -7 nJ1pulse. To study the effects of bandwidth we 
also used the laser free-running (no mode-loclung), in which case the bandwidth is reduced to 
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much less than 1 nm (close to a single 0.44-nm bin of our Ocean Optics spectrometer, which 
maps wavelengths in the range 200-1 100 nm on a 2048-pixel CCD array). 

The lenses L1 and L2 were identical plano-convex BK-7 lenses with nominal focal length 
,f = 300 mm and diameter 50.8 mm. These lenses were anti-reflection coated for 800 nm. 

For the gratings, paper printouts of computer-generated black-and-white patterns similar 
to those shown in Fig. 2 were photographed on black-and-white photo-film (Agfa APX- 100). 
We used the developed negatives as our binary holograms GI and G2. The holograms had a 
grating period A = (5 1.4 f 0.7) lun (or approx. 20 lplmm), making the first-order diffraction 

angle equal to 0.89' (for 800 nm). Using a knife-edge method, we determined that the 
diameter of our incoming beam was 2.0 mm (full width at the l ie2  level, assuming a 
Gaussian profile), so that it illuminated approximately 40 linepairs of the grating. To avoid 
damage to the first holographic grating, GI,  we had to attenuate the incoming pulses by a 
factor of 100 using a neutral density filter. 

Images were recorded by letting the resulting far-field radiation fall directly on the CCD 
chip of a camera, without using an objective. This camera was positioned 55 cm behind G2 
and was connected to a lab PC with a 10-bit camera interface plus software (Spiricon). We 
recorded single frames, with a shutter time of 1/60 s. We subtracted background images that 
were recorded with the laser beam blocked. 

Figure 4 shows the images obtained. The top row panels, Figs. 4(a) and 4(b), were 
recorded with the laser fi-ee-running (narrowband spectrum), and the bottom row panels, 
Figs. 4(c) and 4(d), with the laser mode-locked (femtosecond pulses, broadband spectrum). In 
each of these rows, the left panels, Figs. 4(a) and 4(c), show the diffraction order we called 
N = -1 in the previous section; this is the order for which angular chirp is not expected to be 
compensated. The right panels, Figs. 4(b) and 4(d), show the diffraction order N = +1, for 
which angular chirp is expected to be eliminated. Each of the four panels is surrounded by 
graphs showing the intensity recorded along the horizontal and vertical lines indicated in the 
images. 

As expected, the images in the free-running case show no noticeable difference between 
the orders N = -1, Fig. 4(a), and N = +l  , Fig. 4(b). When the laser is free-running, the 
radiation is essentially monochromatic, so that the concept of spatial chirp becomes irrelevant. 
When the laser is mode-locked, however, the two diffraction orders are different. As 
expected, a blurred image is found for N = -1 , Fig. 4(c): due to angular chirp, the clean dark 
center that was observable in the free-running case is no longer present. Figure 4(d) shows 
that the setup successfully eliminates spatial chirp in the mode-locked case in the order 
N = + 1 . In spite of the 40-nm bandwidth of our pulses, a clean dark spot results in the center 
of the image. (Because we subtract background images, pixels may record net negative values 
due to noise; in Fig. 4, these pixels are gray. We find such negative values far away from the 
center but also in the center.) 

One question remains to be answered: does the donut mode shown in Fig. 4(d) really 
contain a vortex, i.e. an azimuthal phase structure given by exp(ip) ? This can be investigated 
by overlapping this donut mode with some (planar or spherical) reference wavefront which 
contains no vortex, and recording the resulting interferogram. Bazhenov, Vasnetsov, and 
Soskin, early pioneers in optical vortex research, used this technique to demonstrate vortices 
in monochromatic light [a]. In our case, however, there is one complication: because we are 
dealing with ultrashort pulses, temporal overlap is an additional requirement for interference. 
Fortunately, our setup offers an elegant solution to this problem in the form of the zero-order 
radiation coming out of G I .  Upon arrival at G>/L2 this radiation is inherently synchronous 
with the first-order vortex-containing donut mode; this follows directly from an application of 
Ferrnat's principle to our image-forming telescope [12]. Conveniently, the zero-order 
radiation also lacks a vortex. We allowed both the zero-order and the first-order radiation to 
travel through the system by opening up the order-bloclung aperture A in Fig. 3. Figure 5 
shows the interferogram we then recorded. To get good fringe visibility, we found we needed 
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to reduce the intensity of the zero-order radiation substantially. We could not do this using an 
attenuation filter in the zero-order radiation because the resulting time delay between the 
zero-order and first-order radiation was large enough to spoil the interference pattern. Instead, 
we needed to attenuate the zero-order radiation while preserving its synchronicity with the 
vortex donut. To this end, we sent the zero-order radiation through a tiny pinhole pierced in a 

I........,. 

o intensity max 

- 1 0 1 mrn - 1 0 1 mm 

Fig. 4. Images of optical vortices. Intensities in arbitrary units as indicated by the color bar in 
the center (negative values resulting from background subtraction are indicated in gray). Top 
row: laser free-running (narrowband radiation). Bottom row: laser mode-locked (femtosecond 
pulses, broadband radiation). Left column: no compensation of spatial chirp (diffraction order 
N =  -1). Right column: spatial chirp compensated (diffraction order N =  +I). The line graphs 
above and to the left of each image show the intensity distributions (in arbitrary units) along 
the horizontal and vertical dotted lines. Note the clean dark center in panel (d), and its absence 
in panel (c) due to spatial chirp. See Sec. 4 for more details. 
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. l m m  - 
w 
o intensity max 

Fig. 5. Interferogram of an ultrashort optical vortex. To obtain this image, we let the chvpfree 
optical vortex-containing donut mode as shown in Fig. 4(d) interfere with a vortex-free 
spherical reference wave. This reference wave was created by allowing the zero-order radiation 
coming from grating GI (see Fig. 3) to propagate through the setup. To get good fringe 
visibility, we attenuated this reference wave by using a tiny pinhole (see text). A one-armed 
spiral can be recognized in the image, indicating that the topological charge of the vortex in 
our ultrashort pulse equals 1. 

piece of opaque paper with a sharp needle. Of course, the diffraction of the zero-order 
radiation by this tiny pinhole will give it a radius of curvature that differs noticeably ffom that 
of the vortex donut. As is well-known from the CW vortex research, this gives rise to a spiral- 
like structure in the interferogram, exactly as we observe in Fig. 5 (which the reader may 
compare to Fig. l(b) in Ref. [9]). In our case the observed spiral has a single arm, which 
indicates that our vortex has topological charge m = 1 [lo]. All this confirms that the phase 
structure in our donut mode is indeed exp(ip) . 

Finally, we estimated the pulse duration of our chirp-free vortex mode. To this end, we 
used a microscopy cover glass, Corning No. 1, with a thickness D falling between 130 ym 
and 160 ym [13]. We observed that the interference pattern disappears completely when we 
hold this cover glass in the zero-order radiation, but that it reappears when both the zero- 
order and the first-order are sent through it. The time delay At that the cover glass introduces 
between the zero-order and first-order radiation when only the zero-order radiation is sent 
through it equals 

D D D  At=---=-(n-l) 
c l n  c c 

in which c is the speed of light in vacuum (or air), and n the group index of refraction 
(speed of light in vacuum divided by the group velocity) of the cover glass material. Because 
this delay causes the interference pattern to disappear, it must be an upper limit for the pulse 
duration of our produced chirp-free vortex mode. We get a value of 280 fs for this upper limit 
when we set D =I60 ~ u n  and n = 1.523 in Eq. (8). This value of 280 fs is conservative 
because the cover glass we used may be thinner, and because the value 1.523 for n is the 
phase index of refraction of the cover glass material at the sodium D line, 589 nm [13]. For 
800 nm we expect a lower phase index, and, furthermore, the group index of glasses is usually 
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lower than their phase index. We also recorded the spectrum of our vortex mode, and noted 
that it is similar in width to the Ti:sapphire oscillator's spectrum. Probably the duration of our 
vortex mode is limited by the GVD of the BK-7 lenses to a value of - 60 fs, but this limit 
could easily be circumvented with thinner lenses. 

To the best of our knowledge, our interferogram in Fig. 5 is the first one ever published of 
a vortex of femtosecond duration. 

5. Conclusions 

We have demonstrated that our 2f - 2f setup can produce an optical vortex in ultrashort 
radiation pulses. In fact, our wavefront calculations suggest that we should be able to generate 
virtually any light structure, as long as we can encode it in a computer-generated hologram. 

Apart from the two home-made computer-generated holograms, our setup consists of 
readily available (and inexpensive) optical components. It is easily aligned: we used a ruler to 
position the optical elements properly and a CCD camera to align the beam onto the 
holograms. Alignment seems to be a crucial issue for the perfection of a 4f scheme [7]. The 
telescope in that scheme requires precise alignment, while in our 2f - 2f setup the telescope 
alignment only influences the beam divergence, leaving the angular dispersion unaffected. 
The purpose of our lens L2 is to restore the collimation of the beam; it can be replaced with 
another lens if needed. 

Our setup currently produces only weak vortex-carrying pulses. Its efficiency can 
certainly be improved by using phase holograms instead of transmission holograms, and also 
by blazing. Ultimately, a more flexible option is to use a PC-controlled spatial light modulator 
in conjunction with an adaptive learning algorithm [14]. This will allow us to simultaneously 
optimize the energy efficiency of our setup and, if desired, the mode purity of the produced 
vortex pulse. 
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Note added in proof - Using two equally thick cover slips and tilting one, we have now 
determined a 66-fs upper limit for the duration of the vortex-containing pulse (cf. Sec. 4). 
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