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Imaging of Alignment, Deformation and Dissociation of 

CS2 Molecules using Ultrafast Electron Diffraction  

Jie Yang, Joshua Beck, Cornelis J. Uiterwaal, Martin Centurion 

University of Nebraska-Lincoln, Lincoln, Nebraska, 68588 

 

Imaging the structure of molecules in transient excited states remains a challenge due 

to the extreme requirements for spatial and temporal resolution. Ultrafast electron 

diffraction from aligned molecules (UEDAM) provides atomic resolution and allows 

for the retrieval of structural information without the need to rely on theoretical 

models. Here we use UEDAM and femtosecond laser mass spectrometry (FLMS) to 

investigate the dynamics in carbon disulfide (CS2) following the interaction with an 

intense femtosecond laser pulse. We have retrieved images of ground state and excited 

molecules with 0.03 Å precision. We have observed that the degree of alignment 

reaches an upper limit at laser intensities below the ionization threshold, and found 

evidence of structural deformation, dissociation, and ionization at higher laser 

intensities.  

 

 

Laser-alignment of molecules has been proposed as a method to achieve 

three-dimensional diffractive imaging [1-3]. Recent experiments have shown that it is 

possible to record electron [4] and X-ray [5] diffraction patterns of impulsively 

aligned molecules, and to retrieve the molecular structure with atomic resolution [6]. 

Impulsive alignment is often preferable to adiabatic alignment, because the molecules 

can be imaged in a field free environment. The degree of alignment improves with 

increasing laser intensity, however, at high intensities the alignment laser pulse can 

cause structural deformation and ionization of the molecules. In order to determine 

the intensity threshold at which these changes appear, it is necessary to 

simultaneously determine the probability of ionization, the degree of alignment and 

the structure of the excited molecules. This is important to ensure that molecular 

imaging experiments are carried out at intensity levels that do not distort the structure. 

We use Ultrafast Electron Diffraction from Aligned Molecules (UEDAM) to measure 

the degree of alignment and structure of molecules, and Femtosecond Laser Mass 

Spectrometry (FLMS) to measure the degree of ionization. Carbon disulfide (CS2) 

was chosen as a model system for this study. 

 

The alignment, electronic excitation, and dissociation dynamics of carbon disulfide 

(CS2) have drawn much recent interest [7-16]. Although being one of the simplest 

polyatomic molecules, CS2 shares many general and important properties with other 

polyatomic molecules such as the presence of conical intersections and the ability to 

be photoexcited into dissociative states. Laser-based femtosecond pump-probe 

experiments have been a powerful method for studying molecular dynamics in the gas 

phase. A probe femtosecond laser pulse, for example, can ionize the molecule, and the 
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resulting fragments (electrons and ions) studied using kinetic-energy-resolved 

velocity map imaging (VMI) [17, 18]. X-Ray diffraction using an X-Ray free electron 

laser (X-FEL) could be used to observe structural changes with Angstrom spatial 

resolution, provided sub-Angstrom wavelength X-Ray pulses with high fluence 

become available [19]. 

 

In this work UEDAM was used to investigate the dynamics of CS2 after excitation 

with an intense (1012-3×1013 W/cm2) femtosecond infrared laser pulse. UEDAM 

allows us to retrieve both the transient molecular structure with atomic spatial 

resolution and the angular distribution of the molecular ensemble directly from the 

data without relying on theoretical modeling. FLMS was used to accurately determine 

the ionization products and their population as a function of intensity. Laser pulses 

with intensities in the range of 1012-1014 W/cm2 are often used to align molecules or 

to probe excited molecules by multiphoton ionization [7, 8, 12], but their influence on 

the molecular structure has not been fully explored. These high intensities excite a 

broad range of dynamical phenomena, including excitation of rotational, vibrational 

and electronic states leading to alignment, deformation, dissociation and ionization.  

 

Previously, ultrafast electron diffraction (UED) has been used to measure 

conformational changes in molecules in the gas phase with a temporal resolution of a 

few picoseconds [4, 20-21], and UEDAM have been used to measure 3D static 

molecular structures [6]. In contrast to previous UED experiments investigating 

conformational changes [20], impulsive alignment allows us to obtain 2-D images of 

the molecular ensemble instead of only 1-D interatomic distances.  

 

The schematic for the UEDAM experimental setup is shown in Figure 1 (a). A single 

laser pulse with a wavelength of 800 nm is used to excite the molecules, and a 

femtosecond electron pulse is used to record diffraction patterns for a range of time 

delays with respect to the laser pulse. The electron beam, laser beam, and gas jet are 

mutually orthogonal. The overall temporal resolution of the experiment is 1.0 ps, and 

is determined by the duration of the laser and electron pulses and the transverse width 

of the electron, laser and gas beams. The anisotropy of the diffraction pattern is used 

to monitor the degree of alignment (Figure 1 (b)). The anisotropy as a function of time 

is measured for each value of the laser intensity. After finding the time delay 

corresponding to the alignment maximum closest to zero delay, ~109 scattering events 

are accumulated to record a diffraction pattern with a high signal-to-noise ratio (SNR). 

The ionization products and the fraction of ionized molecules were measured using 

FLMS. An ultrashort laser pulse (50 fs duration, 800 nm wavelength) is focused into a 

dilute CS2 gas (~10–7 mbar) and ion yields are recorded as a function of pulse energy 

using a time-of-flight ion mass spectrometer. The spectrometer has a fixed, 

micrometer-sized interaction volume that is smaller than the focal volume of the laser 

[22]. Thus, the target is a fixed number of molecules and the yields are not averaged 

over the spatial intensity profile of the laser focus. Further experimental details may 

be found in Refs. [22-25].  
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Figure 1 | Experimental setup and data analysis methods. (a) Experimental setup. The green, red 

and grey beams represent the electron beam, laser beam and gas jet, respectively. The beam stop is used 

to block the directly transmitted electrons, and the scattering pattern is recorded using a phosphor 

screen that is imaged on a CCD camera. (b) The anisotropy is calculated by taking the difference of the 

total counts in the horizontal (marked by “H”) and the vertical (marked by “V”) quadrants between two 

circles (more details in the Molecular images section in Methods). The diffraction patterns are 

normalized before calculating the anisotropy. The laser polarization is linear, shown by the red arrow. 

(c) Simulated diffraction pattern corresponding to perfect alignment. (d) Autocorrelation function of 

the molecule obtained by an inverse Fourier transform of the simulated diffraction pattern (see the 

Molecular images section in Methods). Each off-center spot represents an interatomic distance of CS2, 

as shown by the two arrows. (e) A ball-and-stick model of CS2 molecule with C-S and S-S distances 

marked.  

 

 

The inverse Fourier transform of the diffraction pattern intensity I is the 

autocorrelation function of the molecular structure convolved with its angular 

distribution (see the Molecular images section in Methods). For a linear molecule that 

is aligned perfectly, an image of the structure can be retrieved directly from the 

autocorrelation function. Figures 1 (c) and (d) show a simulation of the diffraction 

pattern I and its inverse Fourier transform for perfectly aligned CS2 molecules. The 

two bright spots in figure 1 (d) represent the C-S and S-S distances in the CS2 

molecule, as shown by the two white arrows. The spot at the center of the image, 
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which contains no structural information, was removed for clarity. Figure 1(e) 

displays a model of the CS2 molecule with C-S and S-S distances marked for 

comparison. If the alignment is not perfect, the inverse Fourier transform gives a 2-D 

projection of the 3-D image of the molecular ensemble, or equivalently an Abel 

transform of all the molecules along the direction of electron propagation.  

 

The maximum degree of alignment that can be reached by impulsive excitation, in the 

limit of very short pulses, depends on the laser fluence (rather than intensity) [26]. For 

example, two very short pulses with different pulse durations and the same energy 

will produce the same alignment. Other processes, such as multiphoton excitation and 

ionization depend strongly on the laser intensity. We have investigated the dynamics 

both as a function of fluence and intensity, by using two different pulse durations (60 

fs and 200 fs) for each value of the laser pulse energy. The 200 fs pulse is generated 

by chirping the 60 fs pulse, so both pulses have the same spectrum. We have used six 

different laser fluences: 0.16, 0.48, 0.79, 1.10, 1.42 and 1.73 J/cm2. The laser intensity 

ranges from 8×1011 W/cm2 to 2.9×1013 W/cm2. Laser ionization creates a plasma that 

can distort the diffraction pattern due to electric and magnetic fields induced by 

charge separation. The strength of the plasma fields increases with time, on a 

timescale of several picoseconds [27]. We have carefully monitored the electron beam 

during experiments and found that it is not distorted, except at the point with highest 

intensity (1.73 J/cm2 at 60 fs). This point is excluded in the following analysis, thus 

the diffraction patterns used in the analysis are not distorted by the plasma fields, and 

the maximum intensity in the UEDAM experiments is 2.4×1013 W/cm2. The FLMS 

experiments have probed higher intensities to determine the values where the sample 

is fully ionized. 

 

Results 

 

Saturation of alignment and ionization. The anisotropy was measured as a function 

of time for each value of the laser fluence and pulse duration. The delay between 

alignment laser pulse and the peak alignment decreases as the laser pulse intensity 

increases (this effect will be discussed in more detail later in this paper). The 

corresponding diffraction patterns are simulated for the experimental conditions (see 

the Alignment simulation and Diffraction pattern simulation sections in Methods). 

Only rotational excitation states are included in the simulation. A significant 

disagreement between measurement and simulation indicates that effects other than 

excitation of rotational states are present. 
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Figure 2. a) Anisotropy/alignment parameter <cos2α> versus fluence. The blue curves are simulation 

results, and the red curves are experimental data. The solid and dashed curves represent pulse durations 

of 60 and 200 fs, respectively. The points labeled by roman numerals will be discussed below. b) 

Number of detected singly ionized molecules, CS2
+ (blue circles), and the doubly ionized molecules 

CS2
++ (red diamonds) as a function of laser intensity. The error bars for the case of the singly ionized 

molecule are smaller than the blue circles. To account for small pressure fluctuations, the raw counts 

are normalized to the average pressure for the corresponding data set. 

 

Figure 2(a) shows the maximum anisotropy versus fluence. The peak anisotropy for 

each intensity is measured at the time of maximum alignment, which ranges from 1.5 

ps to 0.9 ps for the 200 fs (long) laser pulses, and from 1.1 ps to 200 fs for the 60 fs 

(short) laser pulses. The red and blue curves in Figure 2(a) show the experimental and 

simulated results, respectively; while the solid lines represent 60 fs pulse durations 

and the dashed lines represent 200 fs pulse duration. The right axis corresponds to 

<cos2α> values from simulation, where α represents the angle between the molecular 

axis and the laser polarization. The simulations show that the alignment by short or 

long laser pulses is very similar, with only a small disagreement in the highest 

intensities. The experimental results agree with the simulations at low fluence and 

saturate at around 0.8 J/cm2 for 200 fs excitation (indicated by the roman numeral I in 

Figure 2) and around 0.5 J/cm2 for 60 fs excitation (indicated by the roman numeral 

III).  

 

This measurement indicates that dynamical processes other than excitation of 
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rotational states are present above a threshold value of intensity that is different for 

different laser pulse durations. The accompanying structural changes in the molecule 

can be determined by examining the diffraction patterns at these points, but first we 

examine the role of ionization. Figure 2(b) shows the number of CS2
+ ions and CS2

++ 

ions as a function of laser intensity, measured using the FLMS setup. The number of 

CS2
+ ions saturates at an intensity of 3.3x1013 W/cm2. At an intensity of 1013 W/cm2 

the number of measured ions is 0.02 times the saturation value, which means that at 

most 2% of the molecules have been ionized. For lower intensities, the number of 

ionized molecules is expected to decrease with the seventh power of the intensity (the 

ionization potential is 10.08 eV and the photon energy is 1.55 eV). The fraction of 

CS2
++ ions remains low throughout most of the intensity range used in the UEDAM 

experiments: it is 0.02 % at an intensity of 1013 W/cm2 and 5% at a laser intensity of 

2.4x1013 W/cm2, which corresponds to the intensity at point V in Figure 2(a). The 

number of charged fragments (S+ and CS+) was also measured and was found to 

remain below 1% even at an intensity of 2.4x1013 W/cm2. 

 

Figures 2(a) and 2(b) together show that the saturation of alignment occurs at much 

lower intensity than the saturation of ionization. For alignment with the longer laser 

pulses (200 fs), the alignment reaches a saturation value at an intensity of 4x1012 

W/cm2 (point I in Figure 2(a)), where the ionization is expected to be below 1 part in 

104. Ionization is thus not the mechanism that prevents the alignment from further 

increasing with the laser fluence. All of the data points in the case of the 200 fs pulse 

have an intensity below 1013 W/cm2. For the case of alignment with shorter laser 

pulses (60 fs), the alignment reaches a saturation value at a fluence of 0.48 J/cm2, 

which corresponds to an intensity of 8x1012 W/cm2. Note that while the fraction of 

ionized molecules increase from less than a percent at point III (8x1012 W/cm2) to 

over 60% ionized at point V (2.4x1013 W/cm2), the degree of alignment remains 

relatively constant over this interval. While ionization could be affecting the 

alignment, the fact that the alignment does not decrease with increasing ionization 

suggests that other mechanisms are at play. For example, structural changes, which 

change the moment of inertia of the molecule, can have a significant impact on 

alignment. 

  

From diffraction pattern to molecular images. We employ the 

diffraction-difference method: A reference pattern is subtracted from each diffraction 

pattern to remove unwanted signals like experimental background, scattering from the 

buffer gas, and scattering from unexcited molecules [6, 29]. The diffraction-difference 

pattern is thus due only to excited molecules. The term “diffraction-difference pattern” 

in this manuscript represents the difference of a diffraction pattern and a reference 

pattern. 

 

Figures 3(a) and 3(b) show the diffraction-difference pattern and its inverse Fourier 

transform corresponding to point I in Figure 2 (a). The direction of the linear laser 

polarization is vertical. The reference pattern here is taken at a delay smaller than zero 
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(the electron pulse arrives before the laser pulse), where the molecules are randomly 

oriented. The inverse Fourier transform in figure 3(b) at the positions corresponding 

to the C-S and S-S distances is positive in the vertical direction (along the laser 

polarization) and negative in the horizontal direction. This indicates that the number 

of molecules with their axis parallel to the laser polarization has increased while the 

number of molecules in the perpendicular direction has decreased. In other words, 

molecules are aligned along the laser polarization direction. 

 

When taking randomly oriented molecules as the reference (as we do by capturing the 

reference pattern at negative delay), the diffraction-difference pattern reflects the 

angular distribution of the whole molecular ensemble. The points I and III in Figure 2 

represent the fluences at which the degree of alignment saturates. By using those 

points as references, we can focus on molecular changes that appear for intensities 

beyond the saturation thresholds. We study three points after the saturation: point II 

for 200 fs pulse excitation and points IV and V for 60 fs excitation. These three points 

have slightly higher degrees of alignment than the reference points. When taking 

differences with these reference patterns, what remains are positive regions 

corresponding to molecules aligned with very narrow angular distributions and 

negative regions corresponding to broad angular distributions. This method 

circumvents the need for high alignment. Effectively, the difference gives us access to 

~3% of molecules in the ensemble that are highly aligned. Structural changes can be 

measured with higher accuracy when the degree of alignment is high. 

 

Figures 3(c) and 3(d) show the diffraction-difference pattern between points II and 

point I and the corresponding inverse Fourier transform. The laser pulse intensities at 

points I and II are 4×1012 W/cm2 and 7×1012 W/cm2, respectively. The difference 

between the two points, II-I, yields a pattern corresponding to a very narrow angular 

distribution that approximates perfect alignment, as shown in figure 3(c). This pattern 

results in an image of molecules that are highly aligned. Figure 3(d) shows a 

molecular image achieved using this method, where the position of the spots 

represents the distance between the atoms. With this method the interatomic distances 

can be determined with a precision of 0.03 Å. The precision is limited by maximum 

diffraction angle recorded in the diffraction pattern and the signal to noise ratio in the 

data. The precision was determined by simulating diffraction patterns under the 

experimental conditions, varying the interatomic distance, and running the full data 

processing algorithm to determine the smallest change that can be reliably detected 

(see Interatomic distance determination and measurement precision section in 

Methods).  
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Figure 3. (a) diffraction-difference pattern of point I, reference pattern is taken at t<0; (b) inverse 

Fourier transform of (a); (c) diffraction-difference pattern between points II and I; (d) inverse Fourier 

transform of (c). The experimental data within the black circles in (a) and (c) are missing due to the 

beam stop, so these patterns are completed by letting the pixel values smoothly go to zero towards the 

center. 

 

Molecular image under low intensity.  Figure 4 (a) is an image of the molecule 

obtained from the diffraction-difference pattern between point II and point I, which 

corresponds to excitation with the 200 fs laser pulse. For convenience, this image is 

referred to as “data point II” in the following text. Figure 4(b) shows the molecular 

image obtained by simulating a diffraction pattern from perfectly aligned molecules in 

their electronic ground state. The black curves show the expected C-S and S-S 

distances in the ground state (1.553Å and 3.105Å, respectively). The image in Figure 

4 (a) corresponds to molecules that are confined within a cone with FWHM of 9° (see 

Degree of alignment section in Methods). For such a narrow distribution, the 

molecular image is very close to that obtained with perfect alignment. 

 

The measured bond length is consistent with that of the electronic ground state. The 

two interatomic distances obtained from the data are 1.53±0.03Å and 3.11±0.03Å for 

the C-S and S-S distances, respectively. The same data analysis performed on the 

simulated molecular image results in distances of 1.58±0.03Å and 3.13±0.03Å. In 

both cases the distances are consistent with the bond lengths in the electronic ground 

state. The measured distances are displayed in Table I. While the structure is 
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consistent with the electronic ground state, the data does not rule out the excitation of 

vibrational modes. The excitation of vibration in addition to rotation could interfere 

with the alignment process, but our current experiment cannot detect small vibrations. 

The vibrational period would be shorter than the temporal resolution of our 

experiment, and the time-averaged bond distance would not change significantly. A 

bending vibration would result in a horizontal broadening of the CS spot. There is 

indeed some broadening in the CS spot in Figure 4(a), but the effect is not strong 

enough to draw any firm conclusions. Our method of molecular imaging is much 

more sensitive to changes in the position of the spots than to changes in width, so 

experiments with higher spatial resolution are needed to detect vibrations.  

 

 

Figure 4. (a) Image of the CS2 molecule obtained from the diffraction-difference pattern between points 

“II” (7×1012 W/cm2) and “I” (4×1012 W/cm2). (b) Simulation of ground state, perfectly aligned 

molecules. The solid black curves show the C-S and S-S distances in the ground state for reference. 

The images are corrected for the finite size of the electron beam on the detector (see Correction for size 

of the electron beam section in Methods). 

 

Molecular images under high intensity. Figure 5(a) shows the image of the 

molecules obtained from the diffraction-difference pattern between point IV (1.3×1013 

W/cm2) and point III (8×1012 W/cm2), which corresponds to excitation with the 60 fs 

laser pulse. Figure 5(b) shows the image of the molecules obtained from the 

diffraction-difference pattern of point V (2.4×1013 W/cm2) with reference point III 

(8×1012 W/cm2). For convenience, these two images are named as “data point IV” and 

“data point V” in the following text. In data points IV and V, the molecular ensemble 

has a lower degree of alignment than for data point II. The angular FWHM are 

measured to be 22° and 23°, respectively. The S-S spot is visually broader in 

comparison to data point II, in which a 9° angular FWHM was measured.  

 

Both Figures 5(a) and 5(b) are significantly different from the simulated ground state 

(Figure 4(b)). In these two points, the S-S spots have moved upward, corresponding to 
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a longer distance. Compared to the S-S distance in the ground state, in Figure 5(a) the 

distance has increased by 0.16 Å while in Figure 5(b) the distance has increased by 

0.20 Å. The measurements of interatomic distances from Figure 5 are listed in Table I. 

For the highest rotational state populated in our simulation (J=57), the bond 

elongation due to centrifugal distortion is estimated to be at most 8×10-4Å [30-31], 

much lower than the measured bond lengthening. The longer bond length can be 

attributed to electronic excitation through a multiphoton process or to the formation of 

ions with longer bond lengths. There are multiple excited states that can be reached by 

multiphoton excitation, the majority of which have longer bond lengths [32]. One 

example is the excitation of the 1B2(
1Σ𝑢

+) state through the absorption of 4 photons 

with 800 nm wavelength. In this state the S-S distance is 0.13 Å longer than in the 

ground state. We have also considered the possibility that the ionized molecule CS2
+ 

would have a longer bond length. Simulations suggest that this is not the case [33], 

however further study of the ions is needed to completely rule out that possibility. At 

the highest intensity, there is a small fraction of CS2
++ ions that might contribute to 

observing a longer bond length. After being excited into a dissociative state, the 

molecule can be ionized via subsequent multiphoton absorption, or it can dissociate 

into neutral fragments.  

 

The data presents strong evidence for dissociation. In Figures 5(a) and 5(b), the ratio 

of the brightness of the S-S spot to the brightness of the C-S spot is reduced compared 

to the images in Figures 4 (a) and (b). The effect is stronger in Figure 5(b), where the 

laser intensity is higher. Considering a single molecule, if one of the C-S bonds breaks, 

the spot corresponding to the S-S distance in the molecular image vanishes as the S 

atom is removed, while the intensity in the C-S spot is reduced by a factor of two. 

Thus, when considering the whole ensemble, if a fraction of the molecules fragments, 

we expect that the intensity of the S-S spot would decrease more than the intensity of 

the C-S spot, in agreement with the measurement. Depending on the process, bond 

breaking can result in neutral or charged fragments. Neutral fragments are produced 

by electronic excitation into dissociative states, while charged fragments can be 

produced by bond breaking after ionization or by dissociation into neutral fragments 

that are then ionized by the laser. At the intensity level corresponding to point V the 

fraction of charged fragments was measured with the FLMS setup to be 0.7%. From 

the UEDAM results in Figure 5 (b), we estimate that 2/3 of the highly aligned 

molecules observed in the difference patterns have fragmented. Even though the 

difference diffraction patterns captures only a fraction of all the molecules, it is clear 

that the number of charged fragments is too low to account for the large fraction of 

fragmented molecules. Therefore, the main mechanism for bond breaking is 

dissociation from electronically excited neutral molecules.  

 

As can be seen in Figures 5(a) and 5(b), and in Table I, while the distance of the S-S 

spot increases, the position of the C-S spot does not change and matches that of the 

ground state. This can be explained by considering all the contributions to the 

diffraction pattern and the temporal evolution of the excited states. The S-S spot 
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results only from molecules that have not dissociated, while the C-S spot has 

contributions both from intact molecules and CS fragments. The CS fragment has a 

bond length of 1.5349Å [34], shorter than the ground state CS2. The dissociation 

happens on a fast time scale, leading to CS+S. For example, in the case of excitation 

to the 1B2(
1Σ𝑢

+) state where the dissociation time has been measured, a biexponential 

model with two decay channels was found to be a good fit for the dissociation [7, 9]. 

The fast decay time constant was measured to be less than 100fs and the slow decay 

time was between 500fs and 800fs. Comparing this to our temporal resolution of 1.0 

ps, it is clear that the measurement is time averaged over the dissociation dynamics. 

The diffraction patterns were recorded at the time of maximum alignment, which were 

760 fs and 210 fs after excitation for points IV and V, respectively. Thus, a significant 

fraction of the excited molecules will have already dissociated. While further 

experiments with improved temporal resolution are needed to fully characterize the 

dynamics, our current resolution has allowed us to capture a snapshot of the structure 

of the excited state. 

 

  

 

Figure 5. (a) Image of CS2 molecules taken from the diffraction-difference pattern between points “IV” 

(1.3×1013 W/cm2) and “III” (8×1012 W/cm2). (b) Image of CS2 molecules taken from the 

diffraction-difference pattern between points “V” (2.4×1013 W/cm2) and “III” (8×1012 W/cm2).  

 

 

 C-S Distance (Å) S-S Distance (Å) 

Expected Interatomic Distances 

for the Ground State 

1.553 3.105 

Ground State Simulation 1.58±0.03 3.13±0.03 

Data Point “II” 1.53±0.03 3.11±0.03 

Data Point “IV” 1.52±0.03 3.27±0.03 

Data Point “V” 1.55±0.03 3.31±0.03 

Table I. Expected interatomic distances for ground state and interatomic distances 
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extracted from simulated and measured diffraction patterns. The uncertainty in the 

interatomic distance is explained in the Methods section Interatomic distance 

determination and measurement precision.  

 

 

Our interpretation of the data is that for the alignment experiments with 200 fs laser 

pulses the saturation of alignment is most likely caused by excitation of vibrational 

modes, since at this intensity level ionization is not significant and no structural 

changes were observed. For the measurements with 60 fs pulses, where the intensity 

is higher, the saturation of alignment is due to different mechanisms. Bond 

lengthening, dissociation, and ionization are observed in this intensity range. We 

cannot separate the effect of ionization and structural changes on the alignment, but 

the fact that the degree of alignment remains relatively constant even as the degree of 

ionization increases by two orders of magnitude suggests that ionization is not the 

limiting mechanism. In the next section, we present additional evidence from the 

rotational dynamics that supports the previous evidence for dissociation.  

 

Timing of the first alignment peak. The time delay for the molecules to reach the 

maximum degree of alignment after interacting with the laser pulse depends strongly 

on the moment of inertia of the molecule, as well as the laser pulse intensity. The peak 

alignment is defined as the maximum anisotropy in the pattern, as shown in Figure 

1(b). If the CS2 molecule dissociates, the CS fragment, which has a lower moment of 

inertia, will reach its maximum alignment sooner. Figure 6 shows the time delay 

between the laser pulse and the first alignment peak as a function of fluence for (a) the 

60 fs laser pulse and (b) the 200 fs laser pulse. In the case of the 200 fs laser pulse, the 

time delay slowly decreases with laser intensity, in good agreement with theory. This 

is also in good agreement with our previous conclusion that for the case of the longer 

pulses there are no significant structural changes (small vibrations would not 

significantly change the moment of inertia). For 60 fs pulses where higher intensities 

are reached, experiment and theory agree for the lower fluence values but start to 

differ at a fluence of 0.7 J/cm2 (intensity 1.3×1013 W/cm2), which corresponds to data 

point IV. This is the first point where we expect dissociation, and it also agrees with 

the saturation of the alignment in Figure 2. The maximum alignment has contributions 

from all the molecules, only a fraction of which are dissociated, therefore the moment 

of inertia cannot be directly retrieved from the measured time delay. However, the fact 

that the delay becomes significantly shorter than expected supports the conclusion 

that dissociation is significant at an intensity of 1.3×1013 W/cm2.  
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Figure 6. Time delay between the laser and the peak alignment for (a) 60 fs and (b) 

200 fs. The blue and red curves represent simulated and experimental data, 

respectively.  

 

Discussion 

 

We have investigated the interaction of intense laser pulses with CS2 molecules and 

have observed saturation of alignment, deformation, dissociation and ionization. For 

excitation with long (200 fs) laser pulses, no structural changes are observed. The 

saturation of the alignment is most likely caused by the excitation of vibrational states. 

For higher intensities, multiphoton excitation leads to deformation, dissociation and 

ionization of the molecule. This electronic excitation also leads to saturation of the 

degree of alignment. Our conclusions are supported by spatially resolved molecular 

images, by the dynamics of the alignment process, and by independent measurements 

of the degree of ionization. Our results provide clear guidelines on intensity levels that 

can be used for impulsive alignment experiments without introducing structural 

changes, and show that the degree of alignment may reach a maximum value well 

below the threshold for multiphoton ionization. While the alignment saturates, there 

appears to be a range of intensities over which the structure does not change 

significantly, which can be a window for molecular imaging experiments. An 

alternative approach could be to use adiabatic alignment, where a long laser pulse is 

used to align the molecules, and the diffraction pattern is captured in the presence of 

the laser field [35]. Using a temporally shaped alignment laser pulse with slow 

ramp-up and rapid turn off [28] can in principle achieve both higher degree of 

alignment and a field-free environment for diffraction. A similar study of electron 

diffraction under adiabatic alignment conditions would shed light on the intensity 

limits that can be used in that method and any additional effects that might result from 

performing the diffraction in the presence of a strong laser field. For future 

experiments, the temporal resolution of UEDAM could be improved to around 100 fs 

using keV electron pulses compressed by an RF cavity [36] in combination with tilted 

laser pulses [37-38] or by using MeV electron beams [39]. The spatial resolution can 
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be improved by increasing the beam current, which will allow increasing the area of 

momentum space captured in the diffraction patterns.  

 

Methods 

 

UEDAM experiment. CS2 molecules are seeded into buffer gas of Helium with a 

1:20 ratio for rotational cooling. The de Laval nozzle has a 30 μm diameter at the 

throat and a 90 μm diameter at the exit. A supersonic jet is formed after the nozzle. 

The nozzle backing pressure is set to 1000 Torr. The sizes of electron beam, laser 

beam and gas jet are 100μm, 100μm and 200μm FWHM, respectively. The CS2 gas 

density is ~5×1015/cm3 in the interaction region, and the rotational temperature is 

estimated to be around 30 K [40]. The electron pulses are generated using a 

photocathode and accelerated in a static field to a kinetic energy of 25 keV, which 

corresponds to 𝜆𝑒 = 7.7 𝑝𝑚. The number of electrons per pulse is set to 1000 to 

reduce the space-charge effect and maintain a pulse duration of approximately 400 fs 

at the sample. The overall instrument response function for this experiment, including 

the velocity mismatch between photons and electrons, is 1.0 ps. This is sufficient to 

capture diffraction patterns since the lifetime of the alignment is approximately 2 ps. 

The laser generates pulses with 2 mJ energy and a wavelength of 800 nm at a 

repetition rate of 5 kHz.  

 

Molecular images. All diffraction patterns are normalized to the scattering from 

individual atoms: 𝐼 = 𝐼𝑟𝑎𝑤/𝐼𝑎𝑡, where I represents the normalized diffraction pattern, 

Iraw is the raw diffraction pattern, and Iat is the sum of the scattering intensity of 

individual atoms.  

 

In this work, anisotropy is used to trace the evolution of alignment. Anisotropy is 

defined as the difference in total counts between the horizontal and the vertical 

quadrants in the range of s = 1-3.5 Å-1 (figure 1 (b)) in the normalized diffraction 

pattern. The quantity𝑠 =
4𝜋

𝜆𝑒
𝑠𝑖𝑛(𝜃/2) is the momentum change of the scattered 

electrons, where 𝜆𝑒 is the electron wavelength and 𝜃 is the scattering angle. 

 

The inverse Fourier transform of the diffraction pattern intensity (without phase) of a 

single molecule gives the autocorrelation function of the molecular structure. A 

diffraction pattern of a molecular ensemble is an incoherent sum of diffraction 

patterns from each molecule:  

ℱ−1 [∑|ℱ[𝑎𝑖]|2

𝑖

] = ∑ ℱ−1[|ℱ[𝑎𝑖]|2]

𝑖

= ∑ 𝑎𝑖 ∗ 𝑎𝑖

𝑖

 

In this equation, the left side is an inverse Fourier transform of the incoherent sum of 

many single-molecule diffraction patterns, and the right side is the sum of the 

autocorrelation functions of all molecules.  
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Correction for the size of the electron beam. The electron beam is focused onto the 

gas jet, and the size of the beam increases as it propagates after the gas jet. Thus, the 

finite size of the electron beam on the detector will reduce the sharpness of diffraction 

patterns. The diffraction pattern measured experimentally is a convolution of the ideal 

diffraction pattern with the measured 2D shape of the electron beam on the detector. 

This is equivalent to multiplying the autocorrelation functions by the inverse Fourier 

transform of the electron beam. Therefore, this effect is corrected by dividing the 

autocorrelation functions by an envelope that is the inverse Fourier transform of the 

electron beam. 

 

Interatomic distance determination and measurement precision. The interatomic 

distances are determined by the Gaussian approximation sub-pixel peak position 

determination algorithm [41]. The 0.03Å precision is calculated by applying this 

algorithm to simulated patterns with 50 different bond lengths and taking the standard 

deviation of the difference between output lengths and input lengths. In our 

experiment, the spatial resolution is given by δ=2π/smax≈1.2Å, which gives the width 

of the measured spots in the molecular images. The precision in the interatomic 

distances is given by the position of the spots, which can be determined to higher 

accuracy than the width of the spots, as long as they are well separated. As a 

comparison, static gas-phase electron diffraction experiments [42] typically achieve a 

precision of 0.001 Å with a resolution of δ≈0.2Å.  

 

Degree of alignment. The degree of alignment is usually measured by the quantity 

<cos2α>. However, this metric is not applicable to the case of difference-diffraction 

patterns. In this case the total population will sum up to zero. The molecular images in 

this work contain a narrow positive population section and a broad negative 

population section. The positive population constructs a cone shape. We use the full 

width at half maximum (FWHM) of the full-opening angle of the positive cone to 

characterize the degree of alignment. The angular distribution is extracted using the 

pBasex Abel inversion algorithm [43]. The finite scattering angle captured in the 

diffraction patterns, corresponding to a convolution with a Gaussian envelope in the 

molecular image, is taken into account in the algorithm.  

 

Alignment simulation. The simulation of impulsive alignment is calculated using a 

linear rigid rotor interacting with a non-resonant pulse described by the 

time-dependent Schrodinger equation [44]. In order to better match experimental 

conditions, we have also simulated the effect of a pre-pulse and a pedestal with up to 

1% of the peak intensity and 20 times longer pulse duration. Neither of these 

significantly changed the maximum degree of alignment. 

 

Diffraction pattern simulation. The simulations of diffraction patterns are calculated 

using cylindrical harmonics [45]. In the simulations, the atoms are assumed to be 

stationary at their equilibrium positions without vibrations.  
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