45 research outputs found

    Elektrische LeitfÀhigkeit dichter, schwerioneninduzierter Plasmen

    Get PDF
    Intensive Ionenstrahlen sind besonders geeignet große Volumina von hoher Energiedichte in Materie mit einer guten HomogenitĂ€t der Verteilung physikalischer Parameter zu erzeugen. Die experimentelle Erforschung von Materie unter extremen ZustĂ€nden von Druck, Temperatur und Dichte ist von hohem Interesse sowohl fĂŒr die Grundlagenforschung als auch fĂŒr die angewandte Physik. Dazu gehören Fragen der Astrophysik, Geophysik und der Energiegewinnung mit Hilfe der TrĂ€gheitsfusion. Zur Erforschung der Materie bei hoher Energiedichte gehören insbesondere Experimente zur thermodynamischen Zustandsgleichung und zu Transporteigenschaften. Die elektrische LeitfĂ€higkeit ist eine der fundamentalen Eigenschaften der Materie. Obwohl in den letzten Jahrzehnten das theoretische VerstĂ€ndnis der elektrischen LeitfĂ€higkeit bedeutende Fortschritte gemacht hat, gibt es weiterhin keine allgemeine Theorie, welche das Verhalten dieses Transportkoeffizienten unter unterschiedlichen Bedingungen vorhersagen kann. Deswegen sind Messungen dieser GrĂ¶ĂŸe von besonderer Bedeutung fĂŒr die Grundlagenforschung. Zum ersten Mal wurden am Hochtemperaturmessplatz (HHT) der Plasmaphysikgruppe der Gesellschaft fĂŒr Schwerionenforschung (GSI) Darmstadt Messungen zur elektrischen LeitfĂ€higkeit dichter, schwerioneninduzierter Plasmen durchgefĂŒhrt. Zu diesem Zweck wurden Drahtförmige Festkörpertargets aus unterschiedlichen Materialien (Kupfer, Blei, Silber) mit hochintensiven Schwerionenstrahlen bis auf Temperaturen im Bereich von 0,1 eV innerhalb von 0.001 ms geheizt. Wegen der kurzen Heizzeit bleibt die Dichte der Targets in der NĂ€he der Festkörperdichte und der Druck steigt bis zu einigen kbar. Die LeitfĂ€higkeit dieser Targets wurde mit Hilfe von am HHT neu entwickelten experimentellen Techniken untersucht. Die durchgefĂŒhrten Messungen lieferten zeitaufgelöste Daten sowohl zur Änderung des elektrischen Widerstandes der Targets als auch zu ihrer hydrodynamischen Expansion, und ermöglichten dadurch die Bestimmung des spezifischen elektrischen Widerstandes, beziehungsweise der elektrischen LeitfĂ€higkeit. DarĂŒber hinaus wurden komplexe Simulationen durchgefĂŒhrt, um theoretische Vorhersagen mit den Resultaten dieser Messungen zu vergleichen. Wir sind davon ĂŒberzeugt, dass die gewonnenen Erfahrungen und entwickelten Diagnostikmethoden fĂŒr zukĂŒftige Experimente sehr wichtig sein werden, insbesondere im Rahmen des GSI Zukunftprojektes

    Simulations of Space-Charge and Guiding Fields Effects on the Performance of Gas Jet Profile Monitoring

    No full text
    Gas jet based profile monitors inject a usually curtain shaped gas jet across a charged particle beam and exploit the results of the minimally invasive beam-gas interaction to provide information about the beam’s transversal profile. Such monitor will be installed as part of the High Luminosity LHC upgrade at CERN in the Hollow Electron Lens (HEL). The HEL represents a new collimation stage increasing the diffusion rate of halo particles by placing a high intensity hollow electron beam concentrically around the LHC beam. The gas jet monitor will use the fluorescence radiation resulting due to the beam-gas interaction to create an image of the profiles of both hollow electron and LHC beams However, the high beam space-charge and strong guiding magnetic field of the electron beam cause significant displacements of the excited molecules, as they are also ionized, and thus image distortions. This work presents preliminary simulation results showing expected fluorescence images of the hollow electron profile as affected by space-charge and guiding fields using simulation tools such as IPMsim. The influence of the estimated electron beam and gas jet curtain parameters are investigated

    Design and Test of Beam Diagnostics Equipment for the FAIR Proton Linac

    No full text
    A dedicated proton injector Linac (pLinac) for the Facility of Antiproton and Ion Research (FAIR) at GSI, Darmstadt, is currently under construction. It will provide a 68 MeV, up to 70 mA proton beam at a duty cycle of max. 35”s / 2.7 Hz for the SIS18/SIS100 synchrotrons, using the existing UNILAC transfer beamline. After further acceleration in SIS100, the protons are mainly used for antiproton production at the Pbar ANnihilations at DArmstadt (PANDA) experiment. The Linac will operate at 325 MHz and consists of a novel so called ‘Ladder’ RFQ type, followed by a chain of CH-cavities, partially coupled by rf-coupling cells. In this paper we present the beam diagnostics system for the pLinac with special emphasis on the Secondary Electron Emission (SEM) Grids and the Beam Position Monitor (BPM) system. We also describe design and status of our diagnostics testbench for stepwise Linac commissioning, which includes an energy spectrometer with associated optical system. The BPMs and SEM grids have been tested with proton and argon beam during several beamtimes in 2022. The results of these experiments are presented and discussed
    corecore