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Abstract. Nanostructured metal oxide semiconductors have been widely investigated
and are commonly used in gas sensing structures. After a brief review which will be fo-
cused on chemiresistive oxygen sensing employing this type of sensing materials, for both
room temperature and harsh environment applications (particularly, at high ambient temper-
ature and high relative humidity levels), paper reports new results concerning O2 detection
of a structure using a sensing layer comprising nanostructured (typical grain size of 50 nm)
SrTi0.6Fe0.4O2.8 (STFO40), synthesized by sonochemical methods, mixed with single wall
carbon nanotubes. The structure is a Microelectromechanical System (MEMS), based on a
Silicon-on-Insulator (SOI), Complementary Metal-Oxide-Semiconductor (CMOS)-compatible
micro-hotplate, comprising a tungsten heater which allows an excellent control of the sensing
layer working temperature. Oxygen detection tests were performed in both dry (RH = 0%)
and humid (RH = 60%) nitrogen atmosphere, varying oxygen concentrations between 1% and
20% (v/v), at a constant heater temperature of 650 ◦C.

Key-words: Chemiresistive Oxygen Sensing, Metal Oxide Semiconductors, Sonochem-
istry, STFO, Carbon Nanotubes, CMOS-compatible SOI membrane, MEMSs.

1. Introduction
Industrial applications, such as the control of air-fuel mixture in combustion engine, emission

monitoring in automotive, domestic and other small-scale boilers, steel and cement industries,
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require low cost, low power oxygen sensors with optimum sensitivity, selectivity and response
time [1, 2]. At the same time, monitoring O2 concentration is essential in other fields, such as
medicine, food packaging industries, marine biology, soil aeration, plant respiration, limnology
and waste management [3, 4]. The above-mentioned diversity of applications requiring oxygen
sensing explains the multitude of sensing principles currently employed by both O2 detectors
available either at academic or commercial level.

The concentration of oxygen in an environment can be determined under ambient conditions
using, for instance, optical sensors [5–14], electrochemical sensors [15–23], surface acoustic
wave (SAW) sensors [24] or magnetic devices [25]. Oxygen measurements at high temperature
levels can be performed with ceramic - based sensors, using different measurement principles:
potentiometric [26–28], field effect transistor [29, 30], limiting current amperometric [31, 32].

At the same time, semiconducting metal oxide sensors are widely used in the last years
for chemiresistive oxygen sensing. It is important to mention that this inexpensive alternative
technology offers solutions both for room and high temperature sensing.

In this review, we provide a summary on nanostructured metal oxides and their chemiresistive
oxygen sensing properties. A special attention will be given to metal oxides semiconductors with
ABO3 perovskite structure and their nanocomposites. In addition, new results on the sensing
properties of a nanocomposite mixture comprising SrTi0.6Fe0.4O2.8 (STFO40) and Single Wall
Carbon Nanotubes (SWCNTs) are provided.

2. Some considerations about Metal Oxide Semiconductors
gas sensors and their characteristics

Metal oxide semiconductors-based gas sensors have been considered a promising candidate
for portable gas detection systems because of their significant merits, such as: detection of all
reactive gases, high sensitivity, low cost, lightweight, compact size, robustness, portability, and
simplicity in both manufacturing and usage.

Basically, metal oxides semiconductors sensors are chemiresistors, the resistance of their
sensing layer being changed as result of the interaction with the analyte to be detected.

A p-type semiconductor – based sensing layer is the one where the majority charge carriers
are holes. Upon interaction with oxidizing gases, their conductivity increases, while interaction
with reducing gas yields to increasing resistance. On the contrary, an n-type semiconductor is
a material for which electrons are the majority charge carriers. Upon interaction with oxidizing
gases, their conductivity decreases. Conversely, reducing gases will enrich the sensing layer with
electrons, thus contributing to a decrease in the resistance [33–36].

Although being matters of high importance, the cross-sensitivity of metal oxide
semiconductors-based gas sensors and their increased sensitivity to certain gases are not fully
understood. The exact mechanisms that cause the detection of a certain gas and the non-detection
of another one are still controversial [37].

There are only few papers which show the importance of discussing the gas molecule and
the metal oxide semiconductors in terms of a tandem [38–40]. Moreover, apart from classifying
gases as oxidizing or reducing, the nature of the subtle interaction between the analyte and the
metal oxide semiconductors-based sensing layer is generally ignored in literature.

The performance of metal oxides semiconductors-based chemiresistive sensors is signifi-
cantly influenced by the chemical components [41–45], surface modifications by noble metals
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[46–49], humidity [50–55], and temperature [56–58]. In the last years, a lot of efforts were de-
voted towards the synthesis of nanostructured metal oxide semiconductors. High surface area
and controlled structure have a paramount importance in order to improve gas sensing properties
[59–61].

Besides selectivity issue, metal oxides semiconductors-based chemiresitive gas sensing ex-
hibits other possible disadvantages, such as: high power consumption, drift, material degradation,
slow response time [62].

3. Metal Oxide Semiconductors based oxygen chemirestive
sensing at low temperature

Metal oxides semiconductors-based O2 chemiresistive sensing can be performed at low tem-
perature. Chaabouni et al have used ZnO films for oxygen sensing at room temperature [63].
The metal oxide semiconductor was deposited by RF magnetron sputtering in an argon atmo-
sphere, on glass and p-silicon substrates. It was demonstrated that the O2 sensitive properties are
strongly correlated with the deposition parameters and the substrate nature.

A recent report by Shafura et al. uses sol-gel spin coated method to synthesize nanostructured
aluminium doped zinc oxide sensing layer [64]. The O2 sensing experiments were performed at
room temperature. The porous film exhibited good sensitivity (73%), in the presence of 50 sccm
of O2 flow rate.

Niu et al. explored the O2 sensing capability of ZnO nanowires at room temperature [65].The
piezotronic effect and the pre-treatment of metal oxide surface in UV light trigger an increase
of the sensitivity toward oxygen molecules. A recent study by Chou et al. presents a novel
ultraviolet irradiation (370 nm) assisted nanostructured ZnO sensing layer for high sensitivity
oxygen sensing at 50 ◦C [66]. The chemiresistive response of the UV-assisted ZnO sensing layer
is 4.66 times larger than the same sensing layer in the absence of UV exposure.

A highly sensitive oxygen sensor operating at room temperature based on platinum-doped
In2O3 nanocrystals was developed by Neri et al. [67]. Semiconducting In2O3 nanocrystals,
synthesized using a non-aqueous sol-gel method and doped with 1 wt% of platinum, exhibit
superior performance in comparison with the state-of the art sensors.

4. Metal Oxide Semiconductors – based oxygen chemiresis-
tive sensing at high temperature
In harsh environment applications, especially at high relative humidity levels and at high

ambient temperature levels [1], metal oxide semiconductors-based oxygen chemiresistive sen-
sing is an inexpensive technology that could be an alternative to the well – known lambda sensor.
Oxygen sensors operating at high temperature and employing, as sensing layers, semiconducting
metal oxides such as TiO2 [68, 69], CeO2 [70, 71], SnO2 [72, 73], Ga2O3 [74, 75], and WO3

[76] were fabricated and tested in the last decades.
Their sensing mechanism, explained by the Kröger and Vink model [77], is based on the

reaction between the oxygen vacancies - which are an intrinsic part of their structure – and the
oxygen gas. Metal oxides, with ABO3 like perovskite structure (BaTiO3, LaFeO3, and SrTiO3),
were also studied as sensing layer for oxygen detection [78].
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Recently, doped perovskites have been explored as promising candidates for use in manu-
facturing of chemiresistive oxygen sensors.SrTi1−xFexO3−δ (STFO) with different Ti: Fe ratios
have been proposed in the literature as suitable alternatives for O2 resistive sensing layers. This
type of material exhibits several advantages, such as:√

For a certain Ti:Fe ratio, STFO has zero temperature coefficient;
√

Depending on the manufacturing method, STFO exhibits TCR=0 either for 35% Fe and
65% Ti (STFO35), or for 60% Fe and 40% Ti (STFO60);

√
For STFO60, TCR is 0 if the layer is heated between 450◦C and 650◦C;

√
STFO60 accommodates large levels of dopants without displaying phase changes [79 – 81].

Avramescu et al. [82] have reported the design and characterization of a Microelectrome-
chanical System (MEMS) chemiresistive O2 sensor, based on an ultra-low-power, CMOS-
compatible, Silicon on Insulator (SOI) micro-hotplate membrane, depicted in Figure 1. The
membrane comprises a tungsten heater that can be safely operated at temperatures up to 650 ◦C.
Other important advantages of the SOI micro-hotplates are their very low power consumption
(tens of mW) and high temperature uniformity across the heater sensing area.

Fig. 1. Chemiresistive sensing structure based on SOI CMOS-compatible micro-hotplate (cross-
section).

In the described work, STFO60 was used as sensing layer [62]. The resistive O2 sensing
structure was experimentally tested in an N2 atmosphere, where the O2 concentration was varied
from 1% to 20%. The heater temperature was set at 600◦C. The results, presented in Figure 2,
show a p-type behavior (i.e., conductivity increases with oxygen concentration), characterized
by good sensitivity and fast response.

Electro spinning [83], co-precipitation [84], self-propagating high-temperature synthesis [85],
microwave-assisted hydrothermal [86] are several methods for obtaining micro/nano-structured
STFOx, nanofibers, nanocubes and (nano)-powders (particles size in the 40 nm–1.5 µm range).
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Fig. 2. O2 response of an STFO60-based sensor in nitrogen atmosphere.

In recent years, a lot of effort was devoted to developing new methods for synthesis of nano-
structured materials with controlled size and morphology.

Among these, the sonochemical methods have proved to be a suitable tool for the synthesis
of materials with high surface area materials and uniform particle size [87–97].

Matrix nanocomposites comprising sonochemical synthesized STFOx and different carbon-
based nano-structures (single-wall, double-wall, and multi-wall carbon, graphene, nanotubes,
fullerene-C60, fullerene-C70, nanobuds, carbon nanohorns, carbon nanofibers) were also pro-
posed as sensing layers for chemiresistive oxygen detection [98–100].

5. Proposed synthesis, theoretical considerations and
experimental results

Figure 3 introduces the route followed for the sonochemical synthesis of SrTi0.6Fe0.4O3

(sono-STFO40) powder. The obtained aqueous mixture (pH ∼ 14) was sonicated for 2 h (∼ 94
W/cm2 intensity) in argon (5 L/min flow), using a Hielscher UP200St (200 W, 26 kHz) ultrasonic
generator with a titanium 14 mm sonotrode, set-up shown in Figure 4.
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Fig. 3. Route for synthesizing sono-STFO40 employing sonochemical synthesis.

Fig. 4. Argon set-up for sono-STFO40 sonochemical synthesis.
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In order to produce an O2 sensing layer, sono-STFO40 slurry is required. Sono-STFO40
slurry was obtained by mixing sono-STFO40 (powder, 55% w/w, obtained following the route
in Figure 3), terpineol (solvent, 35% w/w, having the formula depicted in Figure 5), hydroxy-
propyl cellulose (HPC) (binder, 5% w/w, having the formula depicted in Figure 6) and capric
acid/caprylic acid (equimolecular mixture, surfactant, 5% w/w).

Fig. 5. The structure of terpineol.
Fig. 6. The structure of
hydroxypropyl cellulose (HPC).

A Sono-STFO40 & SWCNTs matrix nanocomposite slurry was also synthesized, by mixing
sono-STFO40 (powder, 50% w/w), SWCNTs (5%), terpineol (solvent, 35% w/w), hydroxypropyl
cellulose (HPC)(binder, 5% w/w) and capric acid/caprylic acid (equimolecular mixture, surfactant,
5% w/w). Sono-STFO40 and sono-STFO40 & SWCNTs matrix nanocomposite were deposited
onto the SOI-based micro-hotplate membranes presented in Figure 1, using a dip pen nano-
lithography (DPN) system (NLP2000 by NanoInk). The obtained structures are depicted in Fig-
ures 7 and 8.

Fig. 7. Top-view of the resistive,
SOI micro-hotplate-based O2

resistive sensor employing
sono-STFO40 as sensing layer.

Fig. 8. Top-view of the resistive,
SOI micro-hotplate-based O2

resistive sensor employing
sono-STFO40 mixed with SWCNTs
as sensing layer.

After setting the tungsten heater temperature at 650◦C, the resistance of sensor was measured
at various oxygen concentrations (varying from 1% to 20%). Figures 9 and 10 show how the
resistance of the sensor changes with the O2 concentration, as a function of time, in seconds.
Both structures show p-type semiconductor behavior, good stability and reduced drift.

Sono-STFO40 has p-type semiconducting behavior in atmospheres where the oxygen partial
pressure is larger than 10−5 bar. When the O2 concentration increases, more holes are gene-
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rated due to the oxygen atoms incorporation in the positively charged oxygen vacancies of sono-
STFO40. Thus, sono-STFO40 conductivity is increased, in agreement with the results in Figure
9. At the same time, the conductivity of SWCNTs is strongly influenced by both O2 and relative
humidity (RH) levels. O2 exposure leads to O2 molecules being adsorbed by SWCNTs, thus
also SWCNTs conductivity is being significantly increased. Consequently, when SWCNTs are
mixed with sono-STFO40, even more O2 molecules are attached to the mixture (compared to
sono-STFO40 and SWCNTs alone), and thus the sono-STFO40&SWCNTs mixture has stronger
O2 detection properties, in agreement with the results in Figure 10.

These theoretical considerations are confirmed by the experimental results presented in Figu-
re 11; these demonstrate that the presence of SWCNTs enhances the response to O2 up to 35%,
for O2 concentration levels lower than 4%. At higher O2 concentration levels, this effect becomes
negligible, most probably due to a saturation of the surface SWCNTs with oxygen molecules.

Fig. 9. Resistance of sensor versus time (in seconds), at various oxygen concentrations (in % in
graphic) for the SOI micro-hotplate sensing structure employing sono-STFO40 as sensing layer.

Fig. 10. Resistance of sensor versus time (in seconds), at various oxygen concentrations (in
% in graphic) for the SOI micro-hotplate-based sensing structure employing sono-STFO40 &
SWCNTs mixture as sensing layer.
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Fig. 11. A comparison of O2 response of two SOI micro-hotplate based structures employing
sono-STFO40 and sono-STFO40&SWCNTs, respectively, as sensing layer.

The influence of RH on the O2 response of sono-STFO40 and sono-STFO40 & SWCNTs
was also investigated. The results are summarized in the Figures 12 - 13. As predicted by theory,
RH has a stronger impact on the sono-STFO40 & CNTs based sensor. This effect was expected
given the high RH sensitivity of SWCNTs.

Fig. 12. The influence of RH (% in graphic) on resistance of sensor versus time (in seconds), for
a SOI-based structure employing Sono-STFO40 as sensing layer; O2 level was kept constant at
8% in nitrogen atmosphere.
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Fig. 13. The influence of RH (in % in graphic) on resistance of sensor versus time (in seconds)
for a SOI-based structure employing Sono-STFO40 & SWCNTs as sensing layer; O2 level was
kept constant at 8% in nitrogen atmosphere.

6. Conclusions
The development of nanostructured metal oxides semiconductors for oxygen chemiresistive

sensing has been accelerated over the past 10 years. After reviewing some aspects regarding
metal oxide semiconductors-based oxygen sensing, both at room temperature and in harsh envi-
ronment applications (especially at high ambient temperature and high relative humidity levels),
the paper introduces new results regarding the O2 response of SOI micro-hotplate-based struc-
tures employing, as sensing layer, nanostructured sono-STFO40 (synthesized by a sonochemical
method) mixed with SWCNTs. O2 detection tests, performed in both dry (RH = 0%) and hu-
mid (RH = 60%) nitrogen atmosphere and varying oxygen concentrations between 1% and 20%
(v/v), showed that the presence of the SWCNTs enhances the O2 response up to 35% for O2

concentration levels lower than 4%.
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