145 research outputs found

    A critical role for IRF5 in regulating allergic airway inflammation

    Get PDF
    Interferon regulatory factor 5 (IRF5) is a key transcription factor involved in the control of the expression of pro-inflammatory cytokine and responses to infection, however its role in regulating pulmonary immune responses to allergen is unknown. We used genetic ablation, adenoviral vector-driven overexpression and adoptive transfer approaches to interrogate the role of IRF5 in pulmonary immunity and during challenge with the aero-allergen, house dust mite. Global IRF5 deficiency resulted in impaired lung function and extracellular matrix (ECM) deposition. IRF5 was also essential for effective responses to inhaled allergen, controlling airway hyper- responsiveness, mucus secretion and eosinophilic inflammation. Adoptive transfer of IRF5- deficient alveolar macrophages into the WT pulmonary milieu was sufficient to drive airway hyper-reactivity, at baseline or following antigen challenge. These data identify IRF5-expressing macrophages as a key component of the immune defence of the airways. Manipulation of IRF5 activity in the lung could therefore be a viable strategy for the redirection of pulmonary immune responses and thus, the treatment of lung disorders

    Deuterated Arachidonic Acid Ameliorates Lipopolysaccharide-Induced Lung Damage in Mice

    Get PDF
    Arachidonic acid (ARA) is a major component of lipid bilayers as well as the key substrate for the eicosanoid cascades. ARA is readily oxidized, and its non-enzymatic and enzymatic oxidation products induce inflammatory responses in nearly all tissues, including lung tissues. Deuteration at bis-allylic positions substantially decreases the overall rate of ARA oxidation when hydrogen abstraction is an initiating event. To compare the effects of dosing of arachidonic acid (H-ARA) and its bis-allylic hexadeuterated form (D-ARA) on lungs in conventionally healthy mice and in an acute lung injury model, mice were dosed with H-ARA or D-ARA for six weeks through dietary supplementation and then challenged with intranasal lipopolysaccharide (LPS) for subsequent analysis of bronchoalveolar lavage fluid and lung tissue. Dosing on D-ARA resulted in successful incorporation of D-ARA into various tissues. D-ARA significantly reduced LPS-induced adverse effects on alveolar septal thickness and the bronchoalveolar area. Oral deuterated ARA is taken up efficiently and protects against adverse LPS-induced pathology. This suggests novel therapeutic avenues for reducing lung damage during severe infections and other pathological conditions with inflammation in the pulmonary system and other inflammatory diseases

    Interferon Regulatory Factor 5 Controls Necrotic Core Formation in Atherosclerotic Lesions by Impairing Efferocytosis

    Get PDF
    The research leading to these results has received funding from the British Heart Foundation Center of Research Excellence, Imperial College London, the European Commission under the Seventh Framework Program (FP7/2007–2013; contract no. 201668; AtheroRemo and HEALTH.2012-1.2-1; contract no. 305739 RiskyCAD), The Kennedy Trustees, The Swedish Heart and Lung foundation (20150277), The Swedish Research Council (2015-00582), the Swedish Society of Medicine (SLS-500141), Skåne University Hospital funds, Region Skåne Research funds, and the Novo Nordisk Foundation (grant no. NNF15CC0018346)

    AKT inhibition is associated with chemosensitisation in the pancreatic cancer cell line MIA-PaCa-2

    Get PDF
    Activation of the serine/threonine kinase AKT is common in pancreatic cancer; inhibition of which sensitises cells to the apoptotic effect of chemotherapy. Of the various downstream targets of AKT, we examined activation of the NF-kappaB transcription factor and subsequent transcriptional regulation of BCL-2 gene family in pancreatic cancer cells. Inhibition of either phosphatidylinositol-3 kinase or AKT led to a decreased protein level of the antiapoptotic gene BCL-2 and an increased protein level of the proapoptotic gene BAX. Furthermore, inhibition of AKT decreased the function of NF-kappaB, which is capable of transcriptional regulation of the BCL-2 gene. Inhibiting this pathway had little effect on the basal level of apoptosis in pancreatic cancer cells, but increased the apoptotic effect of chemotherapy. The antiapoptotic effect of AKT activation in pancreatic cancer cells may involve transcriptional induction of a profile of BCL-2 proteins that confer resistance to apoptosis; alteration of this balance allows sensitisation to the apoptotic effect of chemotherapy

    Regression based predictor for p53 transactivation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The p53 protein is a master regulator that controls the transcription of many genes in various pathways in response to a variety of stress signals. The extent of this regulation depends in part on the binding affinity of p53 to its response elements (REs). Traditional profile scores for p53 based on position weight matrices (PWM) are only a weak indicator of binding affinity because the level of binding also depends on various other factors such as interaction between the nucleotides and, in case of p53-REs, the extent of the spacer between the dimers.</p> <p>Results</p> <p>In the current study we introduce a novel <it>in-silico </it>predictor for p53-RE transactivation capability based on a combination of multidimensional scaling and multinomial logistic regression. Experimentally validated known p53-REs along with their transactivation capabilities are used for training. Through cross-validation studies we show that our method outperforms other existing methods. To demonstrate the utility of this method we (a) rank putative p53-REs of target genes and target microRNAs based on the predicted transactivation capability and (b) study the implication of polymorphisms overlapping p53-RE on its transactivation capability.</p> <p>Conclusion</p> <p>Taking into account both nucleotide interactions and the spacer length of p53-RE, we have created a novel <it>in-silico </it>regression-based transactivation capability predictor for p53-REs and used it to analyze validated and novel p53-REs and to predict the impact of SNPs overlapping these elements.</p

    Tumour necrosis factor gene polymorphism: a predictive factor for the development of post-transplant lymphoproliferative disease

    Get PDF
    Epstein–Barr virus-positive post-transplant lymphoproliferative disease (PTLD) is a potentially lethal complication of iatrogenic immunosupression after transplantation. Predicting the development of PTLD allowing early and effective intervention is therefore of importance. Polymorphisms within cytokine genes are implicated in susceptibility to, and progression of, disease however the published data are often conflicting. We undertook investigation of polymorphic alleles within cytokine genes in PTLD and non-PTLD transplant cohorts to determine risk factors for disease. &lt;br/&gt; Methods: SSP-PCR was used to analyse single nucleotide polymorphism within tumour necrosis factor (TNF)-α, interleukin- 1, -6, -10 and lymphotoxin-α genes. The TNF-α levels were measured by standard enzyme-linked immuno-absorbant assay. &lt;br/&gt; Results: We show an association between variant alleles within the TNF-α promoter (−1031C (&lt;i&gt;P&lt;/i&gt;=0.005)); −863A (&lt;i&gt;P&lt;/i&gt;=0.0001) and TNF receptor I promoter regions (−201T (&lt;i&gt;P&lt;/i&gt;=0.02)); −1135C (&lt;i&gt;P&lt;/i&gt;=0.03) with the development of PTLD. We also show an association with TNF-α promoter haplotypes with haplotype-3 significantly increased (&lt;i&gt;P&lt;/i&gt;=0.0001) and haplotype-1 decreased (P=0.02) in PTLD patients compared to transplant controls. Furthermore, we show a significant increase (&lt;i&gt;P&lt;/i&gt;=0.02) in the level of TNF-α in PTLD patient plasma (range 0–97.97 pg ml&lt;sup&gt;−1&lt;/sup&gt;) compared to transplant controls (0–8.147 pg ml&lt;sup&gt;−1&lt;/sup&gt;), with the highest levels found in individuals carrying the variant alleles. &lt;br/&gt; Conclusion: We suggest that genetic variation within TNF-α loci and the level of plasma cytokine could be used as a predictive risk factor for the development of PTLD

    TNFA-863 polymorphism is associated with a reduced risk of Chronic Obstructive Pulmonary Disease: A replication study

    Get PDF
    <p/> <p>Background</p> <p>TNF-α mediated inflammation is thought to play a key role in the respiratory and systemic features of Chronic Obstructive Pulmonary Disease. The aim of the present study was to replicate and extend recent findings in Taiwanese and Caucasian populations of associations between COPD susceptibility and variants of the <it>TNFA </it>gene in a Spanish cohort.</p> <p>Methods</p> <p>The 3 reported SNPs were complemented with nine tag single nucleotide polymorphisms (SNP) of the <it>TNFA </it>and <it>LTA </it>genes and genotyped in 724 individuals (202 COPD patients, 90 smokers without COPD and 432 healthy controls). Pulmonary function parameters and serum inflammatory markers were also measured in COPD patients.</p> <p>Results</p> <p>The <it>TNFA </it>rs1800630 (-863C/A) SNP was associated with a lower COPD susceptibility (ORadj = 0.50, 95% CI = 0.33-0.77, p = 0.001). The -863A allele was also associated with less severe forms of the disease (GOLD stages I and II) (ORadj = 0.303, 95%CI = 0.14-0.65, p = 0.014) and with lower scores of the BODE index (< 2) (ORadj = 0.40, 95%CI = 0.17-0.94, p = 0.037). Moreover, the -863A carrier genotype was associated with a better FEV<sub>1 </sub>percent predicted (p = 0.004) and a lower BODE index (p = 0.003) over a 2 yrs follow-up period. None of the <it>TNFA </it>or <it>LTA </it>gene variants correlated with the serum inflammatory markers in COPD patients (p > 0.05).</p> <p>Conclusions</p> <p>We replicated the previously reported association between the <it>TNFA </it>-863 SNP and COPD. <it>TNFA </it>-863A allele may confer a protective effect to the susceptibility to the disease in the Spanish population.</p

    Mapping tenascin-C interaction with toll-like receptor 4 reveals a new subset of endogenous inflammatory triggers

    Get PDF
    Pattern recognition underpins innate immunity; the accurate identification of danger, including infection, injury, or tumor, is key to an appropriately targeted immune response. Pathogen detection is increasingly well defined mechanistically, but the discrimination of endogenous inflammatory triggers remains unclear. Tenascin-C, a matrix protein induced upon tissue damage and expressed by tumors, activates toll-like receptor 4 (TLR4)-mediated sterile inflammation. Here we map three sites within tenascin-C that directly and cooperatively interact with TLR4. We also identify a conserved inflammatory epitope in related proteins from diverse families, and demonstrate that its presence targets molecules for TLR detection, while its absence enables escape of innate immune surveillance. These data reveal a unique molecular code that defines endogenous proteins as inflammatory stimuli by marking them for recognition by TLRs

    Autophagy acts through TRAF3 and RELB to regulate gene expression via antagonism of SMAD proteins

    Get PDF
    Macroautophagy can regulate cell signalling and tumorigenesis via elusive molecular mechanisms. We establish a RAS mutant cancer cell model where the autophagy gene ATG5 is dispensable in A549 cells in vitro, yet promotes tumorigenesis in mice. ATG5 represses transcriptional activation by the TGFβ-SMAD gene regulatory pathway. However, autophagy does not terminate cytosolic signal transduction by TGFβ. Instead, we use proteomics to identify selective degradation of the signalling scaffold TRAF3. TRAF3 autophagy is driven by RAS and results in activation of the NF-κB family member RELB. We show that RELB represses TGFβ target promoters independently of DNA binding at NF-κB recognition sequences, instead binding with SMAD family member(s) at SMAD-response elements. Thus, autophagy antagonises TGFβ gene expression. Finally, autophagy-deficient A549 cells regain tumorigenicity upon SMAD4 knockdown. Thus, at least in this setting, a physiologic function for autophagic regulation of gene expression is tumour growth

    Regulation of the polymeric immunoglobulin receptor by the classical and alternative NF-κB pathways in intestinal epithelial cells

    Get PDF
    The polymeric immunoglobulin receptor (pIgR) transports IgA antibodies across intestinal epithelial cells (IECs). Expression of pIgR is upregulated by proinflammatory signaling pathways via activation of nuclear factor-κB (NF-κB). Here, we examined the contributions of the RelA-dependent classical and RelB-dependent alternative pathways of NF-κB to pIgR regulation in the HT-29 human IEC line following stimulation with tumor necrosis factor (TNF), lipopolysaccharide (LPS; Toll-like receptor 4 (TLR4) ligand), and polyinosinic: polycytidylic acid (pIC; TLR3 ligand). Whereas induction of proinflammatory genes such as interleukin-8 (IL-8) required only RelA, pIgR expression was regulated by complex mechanisms that involved both RelA and RelB. Upregulation of pIgR expression by ligation of the lymphotoxin-β receptor suggested a direct role for the alternative NF-κB pathway. Inhibition of mitogen-activated protein kinases reduced the induction of IL-8, but enhanced the induction of pIgR by TNF and TLR signaling. Regulation of pIgR through unique signaling pathways could allow IECs to sustain high levels of IgA transport while limiting the proinflammatory responses
    corecore