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ARTICLE

Autophagy acts through TRAF3 and RELB to
regulate gene expression via antagonism of
SMAD proteins
Alice C. Newman 1,2, Alain J. Kemp1, Yvette Drabsch1, Christian Behrends 3,4 & Simon Wilkinson 1

Macroautophagy can regulate cell signalling and tumorigenesis via elusive molecular

mechanisms. We establish a RAS mutant cancer cell model where the autophagy gene ATG5

is dispensable in A549 cells in vitro, yet promotes tumorigenesis in mice. ATG5 represses

transcriptional activation by the TGFβ-SMAD gene regulatory pathway. However, autophagy

does not terminate cytosolic signal transduction by TGFβ. Instead, we use proteomics to

identify selective degradation of the signalling scaffold TRAF3. TRAF3 autophagy is driven by

RAS and results in activation of the NF-κB family member RELB. We show that RELB

represses TGFβ target promoters independently of DNA binding at NF-κB recognition

sequences, instead binding with SMAD family member(s) at SMAD-response elements.

Thus, autophagy antagonises TGFβ gene expression. Finally, autophagy-deficient A549 cells

regain tumorigenicity upon SMAD4 knockdown. Thus, at least in this setting, a physiologic

function for autophagic regulation of gene expression is tumour growth.
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Macroautophagy (hereafter autophagy) is a major cyto-
solic degradative pathway that participates in cellular
metabolism, homoeostasis and anti-microbial defence1.

Upstream stress signals converge on proteins involved in bio-
genesis of a double-membraned vesicle known as the autopha-
gosome2, 3. This core autophagy machinery includes ATG5,
which predominantly exists in a protein–protein conjugate with
ATG12 (ATG5-12), and other key players such as the FIP200/
ULK1 complex. These proteins act upstream of the recruitment of
ATG8-family ubiquitin-like proteins, such as LC3B, to nascent
autophagic membranes, via lipidation of their C-terminal glycine
residues with phosphatidylethanolamine. Fully formed, enclosed
autophagosomes sequester cytosolic cargo that is in turn degra-
ded upon autophagosomal–lysosomal fusion.

Autophagic cargo can comprise general cytosol. However,
autophagy pathways may also select specific cargoes for degra-
dation, for example damaged mitochondria, bacteria or protein
aggregates4. Notably, termination of cytosolic signalling events by
selective autophagy (signalphagy) is emerging as an important
modulator of cell fate, although this has been less widely ana-
lysed5–10. Selective autophagy is facilitated by bifunctional ‘cargo
receptors’ that bind both to ATG8-family proteins, and, directly
or indirectly, to selected ubiquitinated cargoes4. The prototypical
cargo receptor is p62 (SQSTM1)11, 12. However, other, less well-
characterised cargo receptors also participate, including nuclear
dot protein 52 kDa (NDP52), which was identified first as a
mediator of bacterial autophagy and latterly as a component of
the mitochondrial autophagy apparatus13–16.

A rich, yet complex, scenario for unravelling signalling func-
tions of selective autophagy is tumorigenesis. RAS small GTPases
are oncogenically activated in numerous cancers and generally
drive elevated autophagy activity in order to support tumor-
igenesis17–23, with some notable exceptions24. Altered metabo-
lism and mitophagy may have a role here17, 20. However, other
molecular mechanisms remain to be identified. Hypothetically,
these could encompass signalphagy events that would participate
in signalling cross-talk downstream of RAS with other tumour-
relevant pathways and consequently mediate reprogramming of
gene expression. Indeed, some recent studies illustrate the
potential for gene regulation by autophagy, such as inhibition of
inflammatory gene expression via degradation of TBK1 and its
substrate, the transcription factor IRF39, 10, or senescence-
associated degradation of the transcription factor GATA425.
Nonetheless, the prevalence of signalphagy-mediated transcrip-
tional regulation is largely unexplored. We recently proposed that
non-canonical (alternative) NF-κB signalling, involving the RELB
transcription factor, may be dependent upon ATG5, presumably
via an as-yet-unidentified selective autophagy pathway26. How-
ever, the mechanism and significance of this is unclear.

An important signalling molecule that regulates gene expres-
sion is transforming growth factor β (TGFβ)27. TGFβ ligates
receptor serine–threonine kinases, ultimately resulting in cyto-
solic phosphorylation of selected transcription factors of the
SMAD family, such as SMAD2 and SMAD3. Contingent upon
this, heteromeric SMAD assemblies, such as SMAD 2/2/4, SMAD
3/3/4 and, possibly, SMAD2/3/4 complexes, translocate to the
nucleus and bind SMAD-response element (SREs) at proximal
promoters to drive transcription27. The TGFβ transcriptome
exerts pleiotropic effects on tumour biology28, 29. On one hand, it
can inhibit cell cycle progression and promote apoptosis. On the
other hand, TGFβ-driven transcriptional changes also underpin
epithelial–mesenchymal transition (EMT) and enhanced meta-
static abilities of cancer cells. The latter occurs particularly during
cancer progression when resistance or insensitivity to the anti-
proliferative effects of TGFβ are evident. Such insensitivity may
be acquired during the evolution of a tumour. Indeed, RAS

mutant cancer cells commonly exhibit decreased sensitivity to the
anti-tumorigenic effects of the TGFβ ligand30. In certain settings,
such as some pancreatic cancers, this may occur by mutation, for
example deletion of SMAD431. However, resistance of RAS-
driven cancer cells to anti-tumorigenic effects of TGFβ may occur
via alternate, unknown mechanism(s) in other settings.

Here we show that autophagy is required for tumour formation
in mice by RAS-mutant cancer cells. We identify transcriptional
reprogramming via the SMAD proteins when autophagy is
inhibited. We discover that a SMAD–RELB complex ordinarily
represses transcription at TGFβ target genes. This is independent
of the conventional DNA-recognition activity of RELB but
requires indirect recruitment of RELB to genes via SMAD(s).
Activation of RELB, and consequent antagonism of TGFβ, occurs
specifically by RAS-mediated engagement of autophagy. This
autophagy facilitates NDP52-mediated degradation of the signal
terminator for the alternative NF-κB pathway, TRAF3. Finally,
cross-talk with TGFβ via autophagy/RELB is required for the
promotion of tumorigenesis in mice by A549 lung cancer cells.

Results
Autophagy promotes tumorigenesis. To investigate the effect of
stable autophagy inhibition in RAS-mutated human cancer cells,
we used CRISPR/Cas9 to ablate ATG5 expression in A549 lung
adenocarcinoma cells (Fig. 1a, b). Inhibition of autophagy was
confirmed by accumulation of unmodified LC3B-I protein at the
expense of lipidated LC3B-II (Fig. 1a, ΔATG5 vs. wild-type, WT,
controls). Surprisingly, ΔATG5 cells had no differences in growth
kinetics compared to controls (Fig. 1c). This is in contrast to the
reported anti-proliferative effects of acute autophagy inhibition in
numerous RAS-mutated human cell types17, 19, 26. Indeed, RNA
interference (RNAi) against ATG5 and FIP200 inhibited pro-
liferation of the parental A549 cell population (Supplementary
Fig. 1a, b), but notably did not kill cells (Supplementary
Movies 1–3). Thus, autophagy is not required for the long-term
proliferative potential of cells in vitro.

We next investigated in vivo tumorigenicity, using a sub-
cutaneous xenograft model. To ensure that differences between
WT and ΔATG5 cells were attributable to autophagy, we stably
expressed GFP-ATG5 in one clone of ΔATG5 cells, rescuing
LC3B lipidation and p62 regulation (Fig. 1d). Using these cell
lines (Fig. 1e) or an alternate pair of wild-type and ATG5-deleted
clones (Fig. 1f), we observed that loss of ATG5 markedly
diminished tumour growth kinetics in vivo. Consistent with the
in vitro analyses, impairment of autophagy was detected in
ΔATG5 tumours, as shown by a loss of LC3B puncta by
immunohistochemistry (Fig. 1g).

The above data show that sustained and complete loss of
autophagy does not necessarily impede RAS-mutant cancer cell
proliferation in vitro. However, autophagy can be a contributor to
physiological tumour growth in this same cell type.

Autophagy represses TGFβ-driven gene expression. We next
sought to identify mechanism(s) by which autophagy was pro-
moting tumorigenesis. We performed global gene expression
analysis of A549 cells after RNAi against core autophagy genes
ATG5 or ULK1 (Supplementary Data set 1). These siRNA
reagents have previously been validated in these cells26. We aimed
to extract differentially expressed, ontologically coherent tran-
script sets that would illuminate transcriptional reprogramming
events regulating tumorigenesis. Accordingly, computational gene
set enrichment analysis (GSEA) was performed32. Changes in
transcript levels upon autophagy inhibition were compared with
known oncogenic and tumour suppressive pathway readouts.
Surprisingly, the highest scoring correlation was with transcripts
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that are upregulated by the growth factor TGFβ (Fig. 2a). Indeed,
two-fifths of the 50 most autophagy-repressed transcripts were
identified by manual curation as either direct or indirect targets of
transcriptional upregulation by TGFβ, referred to collectively
hereafter as ‘TGFβ-driven genes’ (Fig. 2b, consult Supplementary
Table 1 for a detailed justification of gene classification).

We selected a subset of the transcripts identified in Fig. 2b for
further analyses, in order to elucidate the molecular mechanisms
underlying the apparent antagonism of TGFβ function by
autophagy. Firstly, quantitative real-time PCR (qRT-PCR) after
ATG5 RNAi confirmed repression of TGFβ-driven genes by
autophagy, either under basal growth conditions or upon
stimulation by exogenous TGFβ ligand (Fig. 2c). ULK1 RNAi
also enhanced gene expression to a comparable extent (Fig. 2d).
The persistent autophagy defect in non-tumorigenic
A549 ΔATG5 cells was also associated with upregulation of such
transcripts (Fig. 2e). Repression of TGFβ-driven genes by
autophagy was also evident upon analysis of orthologous
transcripts, basally or after TGFβ treatment, in RAS-
transformed mouse embryonic fibroblasts (MEFs) where
Atg5 was deleted (Fig. 2f, MEF KRAS-V12 cells, congenic WT
or Atg5−/−). Thus, the apparent TGFβ-inhibitory function of
autophagy is manifest in different cell lineages and across species.

We inferred from the above data that autophagy antagonises
TGFβ signalling, at least at the level of target gene output. Indeed,
we confirmed that the basal levels of known TGFβ-driven
transcripts in our data were dependent upon tonic TGFβ-
dependent signal transduction, using an ALK2/4/5 receptor
serine–threonine kinase inhibitor (ALKi) (Supplementary Fig. 2b).
The cytosolic signalling events in the TGFβ pathway can be read
out in phosphorylation of SMAD2 and SMAD3. However, no
increases in basal or exogenous TGFβ-stimulated phospho-
SMAD species were detected in A549 ΔATG5 or MEF KRAS-
V12 Atg5−/− cells (Fig. 2g, h). These data raise the question of a
non-cytosolic site of convergence between molecular events
downstream of autophagy and TGFβ.

RAS drives RELB signalling via autophagy of TRAF3. We
hypothesised that autophagy might selectively target cytosolic
proteins with hitherto unknown functions in regulating the
nuclear output of TGFβ signalling. To identify such proteins, we
performed mass spectrometric screening for interactors of known
cargo receptors. Of note, putative NDP52 interactors included a
number of signal transduction mediators (Fig. 3a, Supplementary
Data set 2). In particular, we identified tumour necrosis factor
receptor-associated factor 3 (TRAF3), a cytosolic scaffold that
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Fig. 1 Autophagy promotes tumorigenesis in vivo. a A549 cells deficient in ATG5 protein expression were generated by CRISPR/Cas9-mediated genome
editing. Each of the two wild-type control clones (WT and WT-2) and ΔATG5 clones (ΔATG5 and ΔATG5-2) were immunoblotted for the indicated
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confluency for time-lapse phase-contrast videomicroscopy using an Incucyte microscope and cell proliferation was monitored by automated confluency
analysis at set intervals post plating (means, n= 9 wells, ±S.D.). d A pooled derivative of ΔATG5 cells was generated by stable transduction with GFP-ATG5
retrovirus (rescue). The indicated cell lines were immunoblotted as shown. e WT, ΔATG5 and rescue cells were subcutaneously injected into
immunocompromised mice and tumour volume was measured longitudinally (means, n= 10 flanks, ±S.E.M., *P< 0.05 vs. WT, two-tailed t-test). f WT-2
and ΔATG5-2 cells were compared for tumour growth after subcutaneous injection into immunocompromised mice (means, n= 12 flanks, ±S.E.M.,
*P< 0.05 or **P< 0.01 vs. WT-2, two-tailed t-test). g At the end of tumour growth in e, control tumours and sufficiently large ΔATG5 tumours were fixed
and stained for LC3B via immunohistochemistry (DAB stain, arrows indicate regions of LC3B puncta, scale bar= 10 µm). Representative images are shown
here. Uncropped blots are available in Supplementary Fig. 10
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represses the activation and nuclear translocation of the alter-
native NF-κB transcription factor, v-rel avian reticuloendothe-
liosis viral oncogene homologue B (RELB)33–35.

RELB is emerging as an important player in various non-
leukaemic cancers, including those dependent upon RAS
signalling26, 36, 37, yet has unclear functions or transcriptional
targets in non-haematopoietic lineages35, 38, 39. Thus, we decided
to prioritise investigation of the NDP52-TRAF3 interaction.

In HEK293T cells, FLAG-tagged TRAF3 co-immunoprecipitated
with NDP52, via the cargo-binding zinc finger (ZnF) domain of the
latter (Fig. 3b). Furthermore, an endogenous NDP52-TRAF3
complex could be immunoprecipitated from A549 cells (Fig. 3c).
Thus, TRAF3 binds NDP52 in the mode of an autophagic cargo13.
We next sought to determine via immunofluorescence whether the
NDP52-TRAF3 complex was targeted to autophagic intermediates.
As expected40, most TRAF3 was found to target to the Golgi
(Supplementary Fig. 3a). However, distinct TRAF3 foci localised
with NDP52 and LC3B puncta, indicative of autophagosomal
targeting (Fig. 3d). Furthermore, RNAi-mediated silencing of
NDP52 both abrogated the localisation of TRAF3 with LC3B foci
(Fig. 3e) and increased endogenous TRAF3 protein levels
(representative blot in Fig. 3f, quantified in Supplementary Fig. 3b).
Pooled derivatives of A549 cells were generated where NDP52 was
eliminated via CRISPR/Cas9. These also had elevated TRAF3 levels
(Fig. 3g). Furthermore, TRAF3 targeting to lysosomes, the end-

point of autophagy pathway, was supported by the colocalisation of
TRAF3 foci with the lysosomal marker LAMP2 after a brief
treatment with the vacuolar H+ ATPase inhibitor, Bafilomycin A1
(BafA1) (Supplementary Fig. 3c).

The above data suggest that TRAF3 is degraded by autophagy.
Readouts of low TRAF3 function include stabilisation of NF-κB
inducing kinase (NIK), the subsequent processing of p100/NFκB2
to p52, which heterodimerises with RELB, and the eventual
nuclear translocation of RELB (Supplementary Fig. 4). Supporting
the hypothesis of TRAF3 degradation, TRAF3 protein levels were
increased post-transcriptionally, and all of the above readouts
were diminished, when autophagy was inhibited by RNAi against
ATG5 or FIP200 in A549 cells (Fig. 4a, Supplementary Fig. 5a, b).
The same differences were seen when comparing A549 ΔATG5
cells with control WT cells (Fig. 4b, c). Similar increases in
TRAF3 levels and loss of p100 processing were also observed after
ULK1 RNAi (Supplementary Fig. 5c–e) or in FIP200 deleted cells
(Fig. 4d). NDP52 or FIP200 deletion also phenocopied ATG5 loss
in elevation of TGFβ-target gene transcript levels (Supplementary
Fig. 5f) and inhibition of tumour growth in vivo (Fig. 4e). The
ATG5-dependency of TRAF3 levels and transcriptional events
were also demonstrated by CRISPR-Cas9 deletion of ATG5 in a
second RAS-mutant lung cancer line, NCI-H23 (Fig. 4f, Supple-
mentary Fig. 6a). Furthermore, autophagy-dependent p100
processing, nuclear RELB, and the autophagic dependency of
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TRAF3 regulation, were all apparent in MEFs, but only when
these cells were transformed with RAS (Fig. 4g, h, Supplementary
Fig. 6b, c). Thus, autophagy-mediated TRAF3 regulation and
consequent RELB activity are strongly linked to RAS activation.

To show that autophagy-mediated turnover of TRAF3 is
indeed the mechanism of regulation of NF-κB, we reverted
TRAF3 levels using RNAi in Atg5−/− MEF KRAS V12 cells
(Fig. 4i). This rescued p100 processing, indicating that blockade
of NF-κB signalling due to loss of ATG5 was overcome.
Knockdown of TRAF3 in A549 ΔATG5 cells also partially
rescued growth in vivo (Supplementary Fig. 6d), although
tumours did eventually regress. The eventual regression is in line
with an additional observation made that complete loss of TRAF3
actually impairs tumorigenicity of A549 cells (Supplementary
Fig. 6e). These data suggest that the elevated TRAF3 level in
autophagy-deficient cells does suppress tumorigenicity. However,
TRAF3 has other functions that contribute to long-term tumour
growth. Notably, in non-RAS mutant murine cells there was

minimal evidence of TRAF3 turnover by potent autophagy
stimuli such as amino-acid starvation (Supplementary Fig. 6f).
Taken together, the above data show that autophagy is important
in TRAF3 turnover downstream of RAS, which links to activation
of nuclear RELB and tumorigenesis.

RELB represses TGFβ-driven gene transcription. Deletion of
RELB phenocopies inhibition of autophagy in preventing growth
of A549 cells in vivo (Fig. 5a, b). We speculated that RELB might
be responsible for both the maintenance of tumorigenicity and
the suppression of TGFβ downstream of autophagy. We further
hypothesised that nuclear RELB might, directly or indirectly,
repress transcription of TGFβ-driven genes. Thus, we performed
gene expression profiling of A549 cells after silencing of RELB
(Fig. 5c, Supplementary Data set 1). Strikingly, GSEA identified
that, just as with inhibition of autophagy, the top-ranking cor-
relation of the transcriptional signature of RELB deficiency was
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with that of TGFβ-driven gene activity (Fig. 5c). Furthermore,
concordance between the transcriptional changes seen upon
autophagy inhibition and those evoked by RELB inhibition was
evident upon heat map comparison of these expression profiles
(Supplementary Fig. 7). Also consistent with the regulation of
TGFβ output by RELB, 31 of the top 50 upregulated transcripts
upon RELB inhibition were categorised as genes that are known
to be upregulated upon TGFβ treatment (Fig. 5d, please consult

Supplementary Table 2 for detailed categorisation). qRT-PCR
experiments directly confirmed the repression of many of these
transcripts by RELB (Fig. 5e and Supplementary Fig. 8). TGFβ-
driven genes thus identified were also upregulated upon ablation
of RELB by CRISPR/Cas9 (Fig. 5f, ΔRELB cells). Finally, cytos-
keletal responses characteristic of TGFβ activation were observed
upon RELB silencing, namely the increased abundance of paxillin
adhesion foci41 (Fig. 5g).
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The above data show that RELB is a repressor of TGFβ-driven
gene activity. Importantly, similar to autophagy inhibition, RELB
loss does not modulate the cytosolic TGFβ signalling pathway
(Fig. 5h).

RELB represses the activation of TGFβ target genes. We next
sought to identify a molecular mechanism by which RELB could
reduce the abundance of TGFβ-driven transcripts. Firstly, we
noted that the dimethyl-K4-histone H3 (H3Me2K4) chromatin
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mark was upregulated at promoters for these genes in both
ΔATG5 and ΔRELB cells (Fig. 6a), suggesting increased tran-
scriptionally active or poised chromatin42.

SMAD3-binding at SREs occurs via protein–DNA interac-
tion27. Similarly, REL subunits of NF-κB classically bind to NF-
κB-binding consensus elements (NBEs)43, 44. RELB is an outlier
in the REL family, with a notably small set of bona fide target
genes identified to date, particular in epithelial lineages45. Also,
RELB can act as a transcriptional repressor45–47. Only a small
subset of the RELB-regulated genes we identified, such as IL8 and
IL11, contained validated NBEs for REL-family recruitment48, 49.
Thus, we first tested the possibility that RELB might instead act
on SREs to repress transcription, using luciferase reporter assays.
Indeed, SMAD2- and SMAD4-driven activation of minimal SRE
elements (bound directly by endogenous SMAD3) was dimin-
ished by transfection of wild-type RELB (Fig. 6b), as was direct
SMAD3-driven transactivation (Fig. 6c). Strikingly, a RELB
mutant deficient in DNA binding50 (AA, R141A Y141A) was
also effective in suppressing SRE activity (Fig. 6d) although, as
expected, could not activate an NBE-driven reporter (Fig. 6e).

Taking the above data together, we conclude that RELB acts to
inhibit promoter activity where SREs are present and undergoes
an unconventional mode of recruitment that is independent of
DNA-binding and NBE recognition.

RELB interacts with SMADs in order to repress transcription.
We next hypothesised that RELB might form a protein–protein
complex with SMAD(s). Confirming the potential for this,
HEK293 cross-linking co-immunoprecipitation experiments
detected the formation of RELB complexes containing SMAD2,
SMAD3 or SMAD4 (Fig. 7a). We also assayed recruitment of
endogenous RELB and SMAD4 to known SMAD-binding pro-
moters using chromatin immunoprecipitation (ChIP). Indeed, we
observed RELB occupancy of test promoters (Fig. 7b). SMAD4
also bound at these sites, as expected (Fig. 7b). Importantly,
however, knockdown of SMAD4 reduced the promoter occu-
pancy of both SMAD4 and RELB (Fig. 7b). This implied that
recruitment of RELB was mediated via the protein–protein
interaction with SMAD(s). Strengthening this, similar reductions
in RELB binding were observed when promoter occupancy by
SMAD4 was blocked with ALKi (Supplementary Fig. 9a). Con-
versely, RELB promoter occupancy was stimulated by exogenous
TGFβ (Fig. 7c), which increases SMAD-2 and -4 binding (Sup-
plementary Fig. 9b). As with SMAD4, knockdown of SMAD2
inhibited RELB binding to chromatin (Supplementary Fig. 9c).
However, SMAD3 knockdown did not diminish RELB binding to

promoters, in fact producing an apparent increase in recruitment,
albeit statistically insignificant (Fig. 7d). This suggests that
SMAD2 and SMAD4 may be the key molecules for recruitment of
RELB to endogenous promoters. Finally, re-ChIP (sequential
ChIP) experiments showed that endogenous RELB and SMAD4
protein molecules co-occupied promoter DNA, consistent with
recruitment of RELB via SMAD interaction (Fig. 7e). Last, we
observed that indirect loss of RELB function in ΔATG5 cells also
abrogated RELB recruitment to promoters (Fig. 7f).

Taking these data together, we conclude that SMAD protein
complexes act as chromatin recruitment factors for RELB. Thus,
RELB facilitates negative feedback on TGFβ-driven gene expres-
sion. Antagonism of SMAD-driven transcription occurs maxi-
mally when autophagy is active and acting to stimulate RELB
function.

SMAD4 inhibition rescues effects of autophagy loss in vivo.
TGFβ-driven transcription has anti-tumorigenic27, 29 and pro-
tumorigenic functions, depending upon context. Herein, we have
discovered that autophagy antagonises SMAD-mediated tran-
scription. In order to examine this in the context of a physiolo-
gical readout, we employed the A549 ΔATG5 model. We stably
suppressed SMAD4 expression using a short-hairpin RNA
(shSMAD4) in both wild-type and ΔATG5 cells (Fig. 8a). This
had no impact on autophagy, as assessed by LC3B lipidation
status (Fig. 8a), or on cell proliferation in vitro (Fig. 8b). How-
ever, tumour growth kinetics were restored in vivo (Fig. 8c).
Similar SMAD4-dependent suppression of tumour growth was
seen upon FIP200 deletion in A549 cells (Fig. 8d, e). Thus, the
suppression of TGFβ transcriptional output by autophagy and
RELB/NF-κB is a component of the pro-tumorigenic effect of
autophagy, at least in A549 cells. This provides a proof-of-
principle that the capacity for regulation of transcriptional output
by autophagy, seen in several cell lines, can affect cell behaviour
in vivo. However, given the pleotropic effects of TGFβ, different
aspects of tumour biology might be predominantly affected in
other settings or models.

Discussion
We aimed to uncover new selective autophagy-based mechanisms
acting to modify cytosolic signalling and cell fate. We focused on
a model for RAS mutant cancer. In many such cancers, autop-
hagy promotes tumorigenesis by mechanisms that are, at best,
partially understood. Our findings are summarised in Fig. 9. A
key component of the mechanism is that autophagy specifies
transcriptional output. Previously, it has been shown that

Fig. 7 RELB binds SMAD proteins and is recruited by SMAD(s) to promoters. a HEK293T cells were co-transfected with plasmids expressing myc-RELB
and epitope-tagged SMAD proteins for 36 h. Cells were crosslinked and immunoprecipitated (x-link IP) using anti-myc antibodies. b A549 cells were stably
transduced with control non-targeting shRNA (shCtrl) or shRNA targeting SMAD4 (shSMAD4). Immunoblotting was performed to confirm selective
SMAD4 knockdown (upper right panel) and cells were subjected to ChIP analysis with RELB and SMAD4 antibodies (IgG, rabbit IgG negative control
antibody). Promoter identities are above charts. Precipitating DNA abundance is expressed as a percentage of input (means, n= 3, ±S.D., *P< 0.05 or
**P< 0.01 shSMAD4 vs. cognate shCtrl IP, two-tailed t-test). c ChIP was performed using A549 cells, with or without prior treatment for 16 h with 5 ng/ml
TGFβ1, using the antibodies indicated (IgG control or RELB). Promoter sequences analysed are given below (means, n= 3, ±S.D., **P< 0.01, two-tailed
t-test, negative ctrl= non-SMAD binding CANX promoter). d A549 cells were stably transduced with control non-targeting shRNA (shCtrl) or shRNA
targeting SMAD3 (shSMAD3). Immunoblotting was performed to confirm selective SMAD3 knockdown and cells were subjected to ChIP analysis with RELB
antibody (IgG, rabbit IgG negative control). Promoter identities are above the charts. Precipitating DNA abundance is expressed as a percentage of input
(means, n= 3, ±S.E.M., #P> 0.05 vs. cognate shCtrl IP, two-tailed t-test). e A549 cells analysed by re-ChIP to detect mutual binding of RELB and SMAD4
to promoters. The first round (initial ChIP) antibody (IgG or SMAD4) is indicated below the plots and the second round (re-ChIP) antibody (IgG, RELB or
SMAD4) is shown in the colour key. Promoter identities are above individual plots (means, n= 3, ±S.D., *P< 0.05 or **P< 0.01 vs. cognate IgG in second
round of ChIP, two-tailed t-test). f A549 WT and ΔATG5 cells were subjected to ChIP with IgG or RELB antibodies (means, n= 3, ±S.D., *P< 0.05 or
**P< 0.01, two-tailed t-test). Uncropped blots are available in Supplementary Fig. 10
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transcriptional responses to interferon pathway stimuli are
exaggerated when autophagy is inhibited9. However, the most
penetrant effect we observed upon autophagy inhibition was
upregulation of the transcriptional response to TGFβ signalling.

TGFβ-driven transcription acts to suppress tumour establish-
ment and growth in a number of cancer types, via a range of
modalities encompassing senescence, inhibition of proliferation
and engagement of cell death27, 29. Indeed, components of the
TGFβ pathway such as SMAD4 and the ligand receptor TGFBR2
are encoded by classic tumour suppressor genes, which undergo
direct loss-of-function mutation during tumorigenesis in certain
cancers27. We reveal an alternate mechanism for suppression of
TGFβ function. RAS engages selective autophagy, which in turn
mediates signalling events resulting in antagonistic cross-talk with
TGFβ, dampening its tumour-suppressive transcriptional output
and thus permitting tumorigenesis in vivo. The molecular basis
via which upregulated TGFβ signalling inhibits tumour growth
remains to be explored. It is likely well-understood mechanisms
such as inhibition of cell-cycle progression and apoptosis play a
role. In RAS-driven cancers, cell-autonomous autophagy
function can promote lipid catabolism and regulate the balance
between oxidative phosphorylation and aerobic usage of glu-
cose17, 18, 20, 24. It is possible that regulation of TGFβ output
could affect metabolism, although this remains to be investigated.

In certain contexts, TGFβ/SMAD can promote EMT and
increased tumour aggression27, 51. Some EMT-implicated genes
are upregulated when autophagy is inhibited in the system
described herein, including CDH2 (N-Cadherin) and SNAI2
(SLUG) (Supplementary Fig. 7). This is also thematically con-
sistent with reports that autophagy can post-transcriptionally
repress the levels of transcription factors that would otherwise
promote EMT, such as TWIST and SNAIL52, 53. Although, on the
other hand, autophagy has been shown in HRAS-transformed
mammary epithelial cells to promote the secretion of factors that
facilitate matrix invasion54. Thus, it is possible that other in vivo
model systems will reveal a more complex relationship between
autophagy and the outcomes of TGFβ signalling, including reg-
ulation of pro-tumorigenic EMT events.

The mechanism of selective autophagy involvement in regula-
tion of gene expression was revealed as termination of the activity
of a new cargo, TRAF3. This culminates in nuclear translocation
of the transcription factor RELB. There is a growing consensus
that such ‘signalphagy’-type responses will prove important in
physiological autophagy function. Indeed, TRAF3 degradation
joins recent examples such as degradation of GSK3β5 and β-
catenin8, TBK19 and IRF310, by autophagy in various systems.

We uncovered a new function for RELB in repression of TGFβ
transcriptional output, wherein RELB operates directly upon
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Fig. 8 Inhibition of SMAD4 rescues the effects of autophagy loss in vivo. a A549 WT and ΔATG5 cells were transduced with control non-targeting shRNA
(shGFP) or shRNA targeting SMAD4 (shSMAD4). Stable lines were immunoblotted as indicated. b Cells were plated for time-lapse phase-contrast
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flanks, ±S.E.M., *P< 0.05 vs. WT shGFP, two-tailed t-test). d, e A549-Cas9 and cognate A549 ΔFIP200 cell lines were transduced with shGFP or
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SMAD-binding promoters. Thus, TGFβ- and RAS-mediated
signalling, the latter involving autophagy, converge antag-
onistically within the nucleus. Upon delving further into the
mechanism by which RELB could regulate transcription, we
discovered that it was not acting in a conventional manner on
NF-κB-binding consensus sequences. We instead elucidated a
new action for RELB in binding to SMAD proteins in the nucleus
and thus ‘hijacking’ TGFβ-activated promoters. We note that a
recent set of reports has suggested that TGFβ can activate LC3
expression and lipidation, and thus autophagic flux, in some cell
types55, 56. This is theoretically compatible with our findings—
autophagy stimulation would fit into our model as a negative
feedback loop in TGFβ signalling. However, we did not find that
SMAD knockdown affected LC3B levels or lipidation.

In summary, this work reveals a new contribution of autophagy
to tumorigenesis in vivo via a form of selective autophagy, or
signalphagy, which results in reprogramming of gene expression.
Discoveries of the signal regulatory functions of autophagy, such
as this, give important insight into the range and mechanistic
diversity of selective autophagy pathways in regulating cell

physiology. Increased comprehension of signal regulatory func-
tions of autophagy will lead to future improvements in under-
standing and targeting autophagy outcomes in health and disease.

Methods
Cells and materials. ALK2/4/5 inhibitor (2-(3-(6-methylpyridin-2-yl)-1H-pyr-
azol-4-yl)-1,5-naphthyridine) was from Calbiochem (#616452). Recombinant
human TGFβ1 ligand was from AbD Serotec. All cell lines were cultured in
standard DMEM supplemented with 10% foetal calf serum and penicillin/strep-
tomycin, at 37 °C and 5% CO2. A549-EcoR cells are A549 cells expressing the
Ecotropic receptor for retroviral infection and G418 resistance marker. They were
obtained from the laboratory of Chris Marshall (Institute of Cancer Research,
London). A549-EcoR cells were identity checked by microsatellite genotyping.
NCI-H23 parental cells were obtained from ATCC and derivatised to express
Ecotropic receptor. Neither A549 nor NCI-H23 cell lines are commonly mis-
identified (source: ICLAC database v8, updated December 2016). Phoenix-Eco cells
were provided by Kevin Ryan, Beatson Institute, UK. HEK293T cells and deriva-
tives are commonly misidentified due to errors during dissemination from one
laboratory to another. However, our cells are the established HEK293FT substrain,
originally obtained from a commercial vendor (Clontech). MEFs were provided by
Noboru Mizushima57. MEFs were immortalised via retroviral transduction of a
derivative of pSIRIP shRNA p19-2—originally a gift from Tyler Jacks, Addgene
#1409058—wherein the selection marker was altered to confer resistance to
hygromycin. Immortalised MEFs were transformed with retrovirus produced from
the MSCV NTAP KRASG12V plasmid. A549 FLAG-HA-TRAF3 lines were derived
by infection with retrovirus produced from cognate MSCV NTAP plasmids and
selection in puromycin. The NTAP tag is a tandem affinity FLAG-HA tag. pBabe-
puro GFP-ATG5-derived retrovirus was used to rescue A549 ΔATG5 cells. To
obtain SMAD4 knockdown cells, pLKO.1 shNTC, shGFP and/or shSMAD459

plasmids were packaged in HEK293T cells by co-transfection with pMD2.G and
psPAX2 plasmids, and used to stably infect A549 cell lines. pLKO.1 viruses were
puromycin resistant except for either TRAF3 knockdowns or any infection of
A549-Cas9 and derivates, where, in both instances, pLKO.1-hygro viruses were
used. A549-Cas9 cells were generated by infection of A549 cells with lentivirus
generated from lentiCas9-BLAST and selection for blasticidin resistance. To obtain
SMAD3 knockdown cells, retrovirus produced from pRetroSuper shCtrl or
shSMAD3 plasmids were used to infect A549 cells and stable pools of cells selected
in puromycin. All cell lines used during these studies tested negative in bi-monthly
mycoplasma screening.

Antibodies. All antibodies are fully described in Supplementary Table 3 and were
routinely used at 1:2000 dilution for immunoblotting and 1:200 dilution unless
noted otherwise. A volume of 5 µl of antibody was routinely used per condition in
protein and chromatin immunoprecipitation experiments.

Plasmids. Plasmids used in this study are fully described in Supplementary
Table 4.

Mass spectrometry. Four 15 cm cell culture dishes of A549-EcoR cells stably
expressing NTAP-NDP52 were washed and harvested with ice-cold PBS followed
by storage at −80 °C or immediate lysis in 4 ml MCLB buffer. Cell debris was
removed from the lysates by centrifugation and supernatants were passed through
0.45 μm spin filters (Millipore). Anti-HA-agarose (60 µl slurry, Sigma) was added
to lysates for immunoprecipitation overnight at 4 °C, rotating. Samples were
washed five times with 1 ml MCLB followed by five washes with PBS and elution
with 150 µl HA peptide (250 µg/ml, Sigma). Eluted immune complexes were
essentially processed in a similar manner to those in published studies60, 61. Briefly,
proteins were precipitated with trichloroacetic acid (Sigma) followed by digestion
with trypsin (Promega) and desalting by stage tips. Samples were analysed in
technical duplicates on a LTQ Velos (Thermo Scientific). Spectra were identified by
Sequest searches followed by target-decoy filtering and linear discriminant analy-
sis62. Peptides that could be assigned to more than one protein in the database were
assembled into proteins according to parsimony principles. For CompPASS ana-
lysis, we employed 34 unrelated bait proteins that were all previously processed in
the same way in A549 cells. Weighted and normalised D-scores (WDN-score) were
calculated based on average peptide spectral matches (APSMs). Proteins with
WDN ≥ 1 and APSM≥ 3 were considered as high-confident candidate interacting
proteins (HCIPs). Proteins with APSM ≥ 2 and that had interactions documented
in BIOGIRD with at least two of the HCIPs and/or NDP52 were also considered
candidate interactors (subthreshold).

Luciferase assays. HEK293T cells were transfected in triplicate with Lipofecta-
mine 2000 according to the manufacturer’s instructions. After 36 h, cells were lysed
in Passive Lysis Buffer (Promega) for 15 min at room temperature and both firefly
and Renilla luciferase activity measured using the Dual-Luciferase® Reporter Assay
System (Promega) and a Fluoroskan Ascent FL plate reader (Labsystems), fol-
lowing manufacturer’s instructions. Cells were transfected with plasmids described
in Figure legends as well as an identical replicate set in which pGL3 basic was

TGFβ
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SRE
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RELB

TRAF3

Anti-tumour 
transcription

Fig. 9 Model of the molecular events comprising an autophagy-mediated,
inhibitory cross-talk with the TGFβ pathway in RAS-transformed cells.
Selective autophagy of TRAF3 via cargo receptors, such as NDP52,
terminates the tonic inhibition of the alternative NF-κB pathway that is
ordinarily observed in unstimulated primary cells. This results in nuclear
activity of RELB. Downstream of TGFβ, frequently present in the tumour
milieu, DNA binding by SMADs drives gene transcription. Directly TGFβ-
responsive gene promoters recruit SMAD complexes to SMAD-response
elements (SREs). However, RELB has the ability to repress SRE-containing
gene promoters. This occurs not via interaction with NF-κB consensus sites
but instead via recruitment to chromatin by protein–protein interaction with
active SMAD complexes. Thus, transcriptionally repressive RELB effectively
‘hijacks’ SMAD promoters to exert negative feedback on TGFβ-mediated
transcription. In the absence of autophagy, the above events involving RELB
are not engaged. Thus, in vivo, autocrine and/or paracrine sources of TGFβ
repress tumorigenesis when autophagy is ablated. Please note though, that
in in vivo models other than A549 cells, it is possible that altered sensitivity
to TGFβ could potentially have other phenotypic outcomes
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substituted for the reporter construct to confirm negligible firefly luciferase activity
in the absence of specific binding elements from the reporters.

Immunoblotting. Cells were routinely lysed in RIPA lysis buffer (50 mM Tris-HCl,
pH 7.5, 0.5% Na deoxycholate, 1% Triton-X-100, 150 mM NaCl, complete
protease inhibitors + 1 mM EDTA (Roche #05056489001), 2 mM Na orthovana-
date, 25 mM Na β-glycerophosphate, 10 mM NaF, 10 mM Na pyrophosphate).
Cells were washed briefly in ice-cold PBS and pre-incubated with ice-cold
RIPA lysis buffer for 5 min prior to scraping and homogenisation. Scraped
and homogenised lysates were incubated on ice for a further 10 min before
clarification by centrifugation in a benchtop centrifuge at full-speed for 15 min at 4
°C. The supernatant was removed and quantified by Pierce BCA Protein Assay
(Life Technologies #23225). For immunoblotting to detect NIK, RIPA lysis
buffer was supplemented with 20 μM MG132 to stabilise NIK levels during lysis.
Gel electrophoresis was performed using 4–12% NuPAGE Novex Bis-Tris gels, or
for LC3B immunoblotting, 4–20% NuPAGE Tris-Glycine gels. Nitrocellulose
membranes, or PVDF membranes for LC3B immunoblotting, were probed
according to the standard methods and visualised using enhanced
chemiluminescence.

Immunoprecipitations. For tagged protein immunoprecipitation, HEK293T cells
were transfected with Lipofectamine 2000 according to the manufacturer’s
instructions. After 24 h, cells were lysed in IGEPAL buffer (50 mM Tris-HCl, pH
7.5, 0.5% IGEPAL CA-630, 150 mM NaCl, complete protease inhibitors + 1 mM
EDTA (Roche), 2 mM activated orthovanadate, 25 mM Na β-glycerophosphate, 10
mM NaF, 10 mM Na pyrophosphate). For cross-linking immunoprecipitation
experiments, 24 h after transfection, cells were cross-linked with 1% para-
formaldehyde in DMEM for 10 min at room temperature, and quenched by 0.125
M glycine for 10 min. Cells were washed twice with ice-cold PBS, scraped, pelleted
and lysed in 1% SDS, 10 mM EDTA and 50 mM Tris, pH 8.0 + protease inhibitors,
then sonicated. Samples were then clarified by centrifugation and supernatants
diluted with IGEPAL buffer to 0.1% SDS. For both standard and cross-linking
immunoprecipitations, lysates were incubated with rabbit anti-myc-conjugated
agarose beads (Sigma) for 4 h and then beads were washed three times in IGEPAL
and eluted in Laemmli sample buffer.

For endogenous co-immunoprecipitation, 4 × 106 A549 cells were seeded
overnight in 15 cm dishes and lysed in IGEPAL buffer. Magnetic beads were
conjugated with antibody using the Dynabead coupling kit (Invitrogen #14311d),
following manufacturer’s instructions. Lysates were incubated with these beads for
4 h, washed three times in IGEPAL buffer and eluted in 4% SDS (no reducing
agent).

Light microscopy. For immunofluorescence, cells were grown on glass coverslips
and fixed in 4% paraformaldehyde for 10 min at room temperature and permea-
bilised with 0.25% Triton X-100 for 20 min at room temperature, or, for LC3B
immunofluorescence, with methanol for 5 min at −20 °C. Cells were incubated with
primary antibodies overnight at 4 °C and secondary antibodies and DAPI for 1 h at
room temperature and mounted using DAKO fluorescent mounting medium.
Secondary antibodies used were Invitrogen goat anti-mouse, anti-rat and anti-
rabbit antibodies conjugated to Alexa Fluor 488, 594 or 647. Widefield fluorescence
images were captured with an Olympus BX51 microscope and an Olympus DP71
camera using cell^F software (Olympus Soft Imaging Solutions GmbH v2.8).
Acquisition time and illumination intensity was consistent across experimental
conditions. RELB nuclear localisation was quantified by single blind scoring.
Confocal microscopy was performed using an Olympus FV1000 confocal micro-
scope using Olympus proprietary software (Fluoview). Images were viewed in
Image J using the Bio-Formats v5.1 plugin. Acquisition parameters were consistent
across experimental conditions. Brightness and contrast were adjusted consistently
across experimental conditions using Image J software. For merge images for
colocalisation, Paint.NET software (v 3.3x, 3.5) was used to adjust the relative level
and curves for red, green or blue channels and changes applied to the whole image,
the same changes were applied to all images across an individual experiment.
Colocalisation of punctate signals in different channels was quantified by single
blind scoring. For quantification of Paxillin foci, the Foci Picker 3D plugin for
Image J was used. The number of foci was normalised to cell number and the
criteria for scoring was unchanged across experimental conditions. In all experi-
ments where quantification was performed, a minimum of 100 cells were scored for
each condition and biological replicate.

Immunohistochemistry. For immunohistochemistry, xenograft tumours were
dissected from the mouse immediately after killing and fixed in 10% neutral-
buffered formalin overnight. Tumours were transferred into 70% EtOH before
embedding in paraffin and sectioning. All further processing was performed using
a BOND III immunostainer (Leica Biosystems). Dewaxing was performed using
dewaxing solution (Leica #AR9222), epitope retrieval was performed using solution
1 (Leica #AR99961). Samples were subjected to DAB immunohistochemistry using
the BOND Refine Kit (Leica #AR922) with the exception of blocking, which was
performed using the mouse IgG blocking solution (Vector #MKB2213).

siRNA transfection. 105 A549 or 7.5 × 104 MEFs was seeded overnight in 35 mm
diameter wells. Cells were transfected for 8 h with Oligofectamine (Life Technol-
ogies #12252-011) and 50 pmol of siRNA, according to the manufacturer’s
instructions. Identities along with bracketed sequences/catalogue numbers of the
siRNAs are as follows: Ctrl(sequence not provided by manufacturer, Dharmacon #
D-001210-01), Ctrl-2 (AATTCTCCGAACGTGTCACGT, Qiagen #SI1027310),
Traf3 (TGCAATCTTGTTTCAAATATA, Qiagen #SI01454551), Traf3-2
(AAGGTTTCATTTGGTATTTAT, Qiagen #SI01454558), ATG5 (CATCT-
GAGCTACCCGGATA, Dharmacon #004374-03), FIP200 (CTGGGACGGATA-
CAAATCCAA, Qiagen #SI02664571), ULK1 (sequence not provided by
manufacturer, Hs_ULK1_5 siRNA, Qiagen), NDP52 (AAGATGAAACTTA-
CACTACTT,Qiagen #SI0431794), RELB (CACAGATGAATTGGAGATCAT,
Qiagen #SI03038483), RELB-2 (CAGCTACGGCGTGGACAAGAA,
Qiagen #SI05001451), NFKB2 (AACCCAGGTCTGGATGGTATT,Qiagen
#SI00300965).

Transcriptomic expression profiling. RNA was harvested from cells 72 h after
transfection with siRNA, and total RNA was purified using the RNeasy mini kit
(Qiagen), including optional DNA digestion. Biotin-labelled cRNA was prepared
using the TotalPrep RNA Amplification Kit (Ambion, #AMIL1791), according to
the manufacturer’s instructions, and hybridised to the Illumina HT-12 human bead
array v4.0. The array was scanned using the Illumina HiScan platform. Raw data
was processed using VST transformation and subsequent RSN normalisation, using
the lumi package in R63, 64.

All downstream analyses were also performed in R. Firstly, subthreshold probes
were identified after reverse transformation of the normalised probe intensities,
using the lumi package functions inverseVST and detectionCall (threshold = 0.01).
These were excluded from subsequent analyses. To identify differing probe
intensities upon autophagy inhibition, unpaired t-tests were performed between all
six non-targeting control samples (three biological replicates each of siCtrl and
siCtrl-2) and between all six autophagy gene siRNA samples (three biological
replicates each of siATG5 and siULK1), using the RSN-normalised values.
Correction for multiple comparison was made using p.adjust and the FDR (false
discovery rate) method at the 0.1 level. Values for selected probes were then reverse
transformed for presentation in Tables and heat maps herein. Where fold cut-offs
were employed as a criterion for selection, these were based upon the fold
difference in the mean of all six autophagy siRNA samples and all six siCtrl
samples, in the reverse transformed data set. Regardless of whether testing
significance or fold changes, all selected probes were also required to meet the
criterion that the average intensities of both subsets of control siRNA in the
reverse-transformed data set were unidirectionally altered when compared pairwise
with each individual test siRNA set (for example, siCtrl< siATG5 and siCtrl2<
siATG5 and siCtrl< siULK1 and siCtrl-2 < siULK1). In Figs. 2b and 5d, probe
intensities when more than one probe was selected for a given gene were collapsed
by averaging the fold changes for each siRNA, such that each gene only appeared
once in the final list of 50.

Identical methodology to that above was used to determine significant changes
and/or fold-change parameters upon alternative NF-κB inhibition (three biological
replicates each of siRELB and siRELB-2).

All heatmaps in the manuscript were produced using heatmap.265. R scripts
used for data processing are available upon request from the corresponding author.

Gene set enrichment analysis. We acknowledge our use of the gene set enrich-
ment analysis, GSEA, software and the Molecular Signature Database (MSigDB) at
http://www.broad.mit.edu/gsea/32. Gene set enrichment was performed using
normalised, reverse transformed data sets with low-intensity probes filtered out, as
described above. Six control replicates were compared against six ATG5/ULK1
siRNA replicates or six RELB replicates in each of two sets of analyses. The
Gene Set used for comparison was ‘oncogenic signatures’ from MSigDB. The
analysis was performed with the following parameters: probes collapsed to single-
gene identities and 1000 permutations, permuting on gene set and Signal2Noise
selected.

qRT-PCR. Total RNA was extracted from cells using the RNeasy mini kit (Qiagen)
with QIAshredder columns, following manufacturer’s instructions. cDNA was
synthesised using 1–5 μg template RNA using the First Strand cDNA synthesis kit
(Applied Biosystems). qRT-PCR was performed with DyNAmo HS SYBR Green
qPCR mastermix (Thermo Scientific F-410) on a Rotor-Gene RG300 (Corbett
Research) or a StepOne PlusReal-Time qPCR machines and analysed with the
corresponding software. All experiments were quantified in relation to standard
curves where presented with an individual gene per chart, and readings were
normalised to 18S levels. In higher-throughput analyses, multiple genes are pre-
sented on the same chart and this indicates that ΔΔCt calculation methodology
was used, employing 18S as reference. Primers are described in Supplementary
Table 5.

Chromatin immunoprecipitation. Samples were cross-linked with 1% paraf-
ormaldehyde in DMEM for 10 min at room temperature and quenched by 0.125M
glycine for 10 min. Cells were washed twice with ice-cold PBS, scraped, pelleted
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and lysed in 1% SDS, 10 mM EDTA and 50 mM Tris, pH 8.0 + protease inhibitor
tablets (Roche), then supernatants were sonicated uniformly to generate fragments
ranging from 200 to 1000 bp. A sample was stored as input. Sonicated supernatants
were pre-cleared with Protein A Dynabeads (Life Technologies) bound with 5 µg
rabbit IgG (Cell Signaling Technology) in the presence of 2 µg salmon sperm DNA.
Pre-cleared lysates were incubated with Protein A Dynabeads (Invitrogen) and 5 µg
of immunoprecipitating antibody or rabbit IgG control, overnight at 4 °C under
rotation. Washes were performed in each of the buffers sequentially: low salt buffer
(0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris, 200 mM NaCl, pH 8.1),
high salt buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris,
550 mM NaCl, pH 8.1), LiCl buffer (250 mM LiCl, 1% IGEPAL, 1% sodium
deoxycholate, 1 mM EDTA and 10 mM Tris, pH 8.1) and twice in Tris-EDTA (10
mM Tris-HCl 1 mM EDTA, pH 8.1). Beads were incubated and then vortexed,
twice sequentially, in elution buffer (100 mM NaHCO3 and 1% SDS). 200 mM
NaCl was added to eluted, precipitated chromatin, or to input samples, and cross-
linking was reversed by incubation at 65 °C overnight. The sample was then
adjusted to 40 µg/ml Proteinase K, 40 mM Tris, 10 mM EDTA and digestion was
performed for 4 h at 45 °C. DNA was purified with a Qiagen PCR clean-up kit
according to the manufacturer’s instructions, and samples were quantified for
specific DNA species by SYBR-green qRT-PCR as described above, using the
tabulated primers (Supplementary Table 5).

For re-ChIP assays, following the first immunoprecipitation (as above),
beads were washed three times with re-ChIP wash buffer (2 mM EDTA, 200 mM
NaCl, 0.1% SDS, 1% NP-40) and twice with Tris-EDTA buffer. DNA was eluted
in Re-ChIP elution buffer (10 mM Tris HCl, 1 mM EDTA, 2% SDS) for 30 min at
37 °C. Following elution, the supernatant was diluted to a concentration of 0.1%
SDS with ChIP dilution buffer (1% Triton-X-100, 2 mM EDTA, 150 mM NaCl,
20 mM Tris-HCl, pH 8.1) supplemented with 50 μg bovine serum albumin and
protease inhibitor tablets (Roche). Samples were incubated with Protein A
Dynabeads (Invitrogen) and 5 µg of immunoprecipitating antibody or rabbit IgG
control, overnight at 4 °C under rotation. Beads were washed, DNA eluted and
reverse crosslinking performed as in the standard ChIP assay. Primers used for
qRT-PCR analysis are shown in Supplementary Table 5.

CRISPR/Cas9-mediated gene editing in A549 cells. For clonal cell cultures,
cells were transfected with a 50:50 ratio of gRNA plasmid and Cas9:puro2A by
nucleofection with Lonza Nucleofector kit T, according to the manufacturer’s
instructions for A549 cells. Cells were selected for successful transient transfection
with 2.5 µg/ml puromycin, 24 h post transfection for a further 24 h duration, and
then grown in regular medium as single cell colonies. Control colonies were
derived after transfection of empty gRNA plasmid. ΔATG5 clones were derived
after transfection of gRNA targeting GAGATATGGTTTGAATATGA. ΔRELB
clones were derived from gRNAs targeting GCCACGCCTGGTGTCTCGCG
(clone 1) or GATCATCGACGAGTACATCA (clone 2).

For pooled selections, A549-EcoR and NCI-H23-EcoR cell populations were
derivatised by infection with lenti-Cas9 Blast lentivirus packaged in HEK293T cells
(see Cells and materials)26 and selection in 30 and 15 μg/ml blasticidin,
respectively. These cells were further transduced with unmodified lentiGuide-puro
lentivirus, to provide control pooled cells (referred to as A549-Cas9 and NCI-H23-
Cas9 in data figures), or with lentiGuide-puro expressing specific gRNA sequences.
For A549-Cas9 editing these sequences were CTGGTTAGGCACTCCAACAG
(FIP200), TGAGTATTACACCTTCATGT (NDP52) or GAAAGACCTGCGAGA
CCACG (TRAF3). For NCI-H23-Cas9, the sequence was GAGATATGGTTTGAA
TATGA (ATG5). All cells were selected in 2 μg/ml puromycin.

Animal models. Female CD1-nude mice were subcutaneously injected on both
flanks with 100 µl of 1.5 × 107 (Figs. 1e and 8c only) or 3.5 × 107 cells/ml
A549 suspension in Hank’s Buffered Saline Solution. Minimally, eight flanks were
injected in order to achieve sufficient experimental power, based upon prior
experience of the model. Mice were from Charles River Laboratories and in all
experiment groups were identically between 2 and 5 months of age and mice
allocated to groups from purchased stocks at random. Mice were housed in indi-
vidually ventilated cages and tumour measurements thereafter taken using calli-
pers. Investigators were blinded to mouse identity to the extent that mice were ear-
tagged with code numbers to identity to which experimental groups they belonged.
Nonetheless, mice in individual experimental groups were housed together in the
same cage. Mice were killed if tumour length exceeded 10 mm or ulceration was
observed. At endpoint, tumour tissue was fixed overnight in 10% neutral-buffered
formalin and paraffin embedded. All animal studies were performed after Uni-
versity of Edinburgh local ethical review and under the authority of a UK Home
Office project licence.

Statistics. All replicates are biological replicates unless explicitly indicated other-
wise in Figure legends. All statistical tests were based upon estimates of variation
relating to presumed normal distribution (standard deviation and/or standard
error of the mean). Unless stated otherwise in the Figure legend, for example
where multiple testing was corrected for, statistical analyses were standard or one-
sample Student’s t-tests. All t-tests were two-tailed. As a special instance, treatment
of gene expression profiling is described in a dedicated Method entry, above.

Blinding was performed where practicable and in such instances is described
under individual methodology descriptions (for example, immunofluorescence
scoring).

Code availability. R scripts used to process array data are available from the
authors.

Data availability. A MIAME-compliant data set encompassing all the array-based
expression profiling raw data, processed data, and further experimental detail, has
been deposited in NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/
geo/), with accession number GSE73158. Raw data for NDP52 affinity purification
mass spectrometry have been deposited at MassIVE (http://massive.ucsd.edu) with
accession number MSV000081221. Other data are available from the authors upon
reasonable request.
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