321 research outputs found
Reanalysis of the binary neutron star merger GW170817 using numerical-relativity calibrated waveform models
We reanalyze gravitational waves from a binary-neutron-star merger GW170817 using a numerical-relativity (NR) calibrated waveform model, the TF2+_KyotoTidal model. By imposing a uniform prior on the binary tidal deformability the symmetric credible interval of is estimated to be () for the case of (), where is the maximum frequency in the analysis. We also reanalyze the event with other waveform models: two post-Newtonian waveform models (TF2PNTidal and TF2+PNTidal), the TF2+NRTidal model that is another NR calibrated waveform model used in the LIGO-Virgo analysis, and its upgrade, the TF2+NRTidalv2 model. While estimates of parameters other than are broadly consistent among different waveform models, our results indicate that there is a difference in estimates of among three NR calibrated waveform models. The difference in the peak values of posterior probability density functions of between the NR calibrated waveform models: the TF2+KyotoTidal and TF2+NRTidalv2 models for is about 40 and is much smaller than the width of credible interval, which is about 700. The systematic error for the NR calibrated waveform models will be significant to measure in the case of GW170817-like signal for the planned third generation detectors's sensitivities
A scalar field condensation instability of rotating anti-de Sitter black holes
Near-extreme Reissner-Nordstrom-anti-de Sitter black holes are unstable
against the condensation of an uncharged scalar field with mass close to the
Breitenlohner-Freedman bound. It is shown that a similar instability afflicts
near-extreme large rotating AdS black holes, and near-extreme hyperbolic
Schwarzschild-AdS black holes. The resulting nonlinear hairy black hole
solutions are determined numerically. Some stability results for (possibly
charged) scalar fields in black hole backgrounds are proved. For most of the
extreme black holes we consider, these demonstrate stability if the ``effective
mass" respects the near-horizon BF bound. Small spherical
Reissner-Nordstrom-AdS black holes are an interesting exception to this result.Comment: 34 pages; 13 figure
Degenerate Rotating Black Holes, Chiral CFTs and Fermi Surfaces I - Analytic Results for Quasinormal Modes
In this work we discuss charged rotating black holes in
that degenerate to extremal black holes with zero entropy. These black holes
have scaling properties between charge and angular momentum similar to those of
Fermi surface operators in a subsector of SYM. We add a
massless uncharged scalar to the five dimensional supergravity theory, such
that it still forms a consistent truncation of the type IIB ten dimensional
supergravity and analyze its quasinormal modes. Separating the equation of
motion to a radial and angular part, we proceed to solve the radial equation
using the asymptotic matching expansion method applied to a Heun equation with
two nearby singularities. We use the continued fraction method for the angular
Heun equation and obtain numerical results for the quasinormal modes. In the
case of the supersymmetric black hole we present some analytic results for the
decay rates of the scalar perturbations. The spectrum of quasinormal modes
obtained is similar to that of a chiral 1+1 CFT, which is consistent with the
conjectured field-theoretic dual. In addition, some of the modes can be found
analytically.Comment: 41 pages, 1 figure, LaTeX; v2: typos corrected, references adde
Gravitational Wave Physics and Astronomy in the nascent era
The detections of gravitational waves (GW) by the LIGO/Virgo collaborations provide various possibilities for both physics and astronomy. We are quite sure that GW observations will develop a lot, both in precision and in number, thanks to the continuous work on the improvement of detectors, including the expected new detector, KAGRA, and the planned detector, LIGO-India. On this occasion, we review the fundamental outcomes and prospects of gravitational wave physics and astronomy. We survey the development, focusing on representative sources of gravitational waves: binary black holes, binary neutron stars, and supernovae. We also summarize the role of gravitational wave observations as a probe of new physics
KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector
The recent detections of gravitational waves (GWs) reported by LIGO/Virgocollaborations have made significant impact on physics and astronomy. A globalnetwork of GW detectors will play a key role to solve the unknown nature of thesources in coordinated observations with astronomical telescopes and detectors.Here we introduce KAGRA (former name LCGT; Large-scale Cryogenic Gravitationalwave Telescope), a new GW detector with two 3-km baseline arms arranged in theshape of an "L", located inside the Mt. Ikenoyama, Kamioka, Gifu, Japan.KAGRA's design is similar to those of the second generations such as AdvancedLIGO/Virgo, but it will be operating at the cryogenic temperature with sapphiremirrors. This low temperature feature is advantageous for improving thesensitivity around 100 Hz and is considered as an important feature for thethird generation GW detector concept (e.g. Einstein Telescope of Europe orCosmic Explorer of USA). Hence, KAGRA is often called as a 2.5 generation GWdetector based on laser interferometry. The installation and commissioning ofKAGRA is underway and its cryogenic systems have been successfully tested inMay, 2018. KAGRA's first observation run is scheduled in late 2019, aiming tojoin the third observation run (O3) of the advanced LIGO/Virgo network. In thiswork, we describe a brief history of KAGRA and highlights of main feature. Wealso discuss the prospects of GW observation with KAGRA in the era of O3. Whenoperating along with the existing GW detectors, KAGRA will be helpful to locatea GW source more accurately and to determine the source parameters with higherprecision, providing information for follow-up observations of a GW triggercandidate
Vibration isolation system with a compact damping system for power recycling mirrors of KAGRA
A vibration isolation system called the Type-Bp system used for power recycling mirrors has been developed for KAGRA, the interferometric gravitational-wave observatory in Japan. A suspension of the Type-Bp system passively isolates an optic from seismic vibration using three main pendulum stages equipped with two vertical vibration isolation systems. A compact reaction mass around each of the main stages allows for achieving sufficient damping performance with a simple feedback as well as vibration isolation ratio. Three Type-Bp systems were installed in KAGRA, and were proved to satisfy the requirements on the damping performance, and also on estimated residual displacement of the optics
Application of independent component analysis to the iKAGRA data
We apply independent component analysis (ICA) to real data from a gravitational wave detector for the first time. Specifically, we use the iKAGRA data taken in April 2016, and calculate the correlations between the gravitational wave strain channel and 35 physical environmental channels. Using a couple of seismic channels which are found to be strongly correlated with the strain, we perform ICA. Injecting a sinusoidal continuous signal in the strain channel, we find that ICA recovers correct parameters with enhanced signal-to-noise ratio, which demonstrates the usefulness of this method. Among the two implementations of ICA used here, we find the correlation method yields the optimal results for the case of environmental noise acting on the strain channel linearly
- …