41 research outputs found

    Spaceflight Nutrition Research: Platforms and Analogs

    Get PDF
    Understanding human adaptation to weightlessness requires research in either the true microgravity environment or iii a ground-based model. Over the years, many flight platforms have been available, and many ground models have emerged for both human and animal studies of the effects of spaceflight on physiology. In this review, we provide a brief description of these models and the main points to be considered when choosing a model. We do not intend to provide a comprehensive overview of each platform or model, but rather to provide the reader with an overview of the options available for space nutrition research, and the relative merits and/or drawbacks of each

    Validation of Procedures for Monitoring Crewmember Immune Function - Short Duration Biological Investigation

    Get PDF
    Validation of Procedures for Monitoring Crew Member Immune Function - Short Duration Biological Investigation (Integrated Immune-SDBI) will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flightcompatible immune monitoring strategy. Immune system changes will be monitored by collecting and analyzing blood, urine and saliva samples from crewmembers before, during and after space flight

    Immune System Dysregulation, Viral Reactivation and Stress During Short-Duration Spaceflight

    Get PDF
    The objective of this NASA Short-Duration Bioastronautics Investigation (SDBI) was to assess spaceflight-associated immune dysregulation. Many previous studies have investigated this phenomenon post-flight, and found altered distribution and function of the peripheral leukocyte populations. Alterations in cytokine production profiles have also been reported. Unfortunately, post-flight data may be altered by the stress associated with high-G re-entry and readaptation to unit gravity following deconditioning. Therefore, the current study collected blood and saliva samples from crewmembers immediately before landing, and returned those samples to Earth for terrestrial analysis. Assays include peripheral comprehensive immunophenotype, T cell function, cytokine profiles, viral-specific immunity, latent viral reactivation (EBV, CMV, VZV), and stress hormone measurements. A total of 18 short duration crewmembers completed the study and the final data will be presented

    Immune System Dysregulation and Herpesvirus Reactivation Persist During Long-Duration Spaceflight

    Get PDF
    Background: Immunity, latent herpesvirus reactivation, physiological stress and circadian rhythms were assessed during six month spaceflight onboard ISS. Blood and saliva samples were collected early, mid and late in-flight and returned for immediate analysis. Mid-point study data (10 of 17 planned subjects) will be presented. Results: Some shifts in leukocyte distribution occurred during flight, including alterations in CD8+ T cell maturation. General T cell function was consistently reduced early in-flight. Levels CD8+/IFNg+ producing T cells were depressed early in-flight, and immediately upon landing. Persistent mitogen-dependant reductions were observed in IFNg, IL-17a, IL-10, TNFa and IL-6 production. Monocyte production of IL-10 was reduced, whereas IL-8 levels were increased. Levels of mRNA for the TNFa, IL-6 and IFNg were transiently elevated early in-flight, and the dynamics of TNF and IL-6 gene expression were somewhat antagonistic to their corresponding receptors during flight. The number of virus-specific CD8+ T-cells was measured using MHC tetramers, while their function was measured using intracellular cytokine analysis following peptide stimulation. Both the number and function of EBV-specific cells decreased during flight as compared to preflight levels. The number of CMV-specific T-cells generally increased as the mission progressed while their function was variable. Viral (EBV) load in blood was elevated postflight. Anti-EBV VCA antibodies were significantly elevated by R+0; anti-EA antibodies were not significantly elevated at landing; and anti-CMV antibodies were somewhat elevated during flight. Higher levels of salivary EBV DNA were found during flight. VZV DNA reactivation occurred in ~50 % of astronauts during flight, continuing for up to 30 days post-flight. CMV was shed in 35 % the in-flight and 30% of postflight urine samples of the crewmembers. There was generally a higher level of cortisol as measured in urine and saliva in the astronauts during flight, but plasma cortisol was relatively unchanged during flight. Circadian rhythm of salivary cortisol was altered during flight. Conclusion. Some alterations in immunity do not resolve during six month spaceflight, consequentially resulting in persistent herpesvirus reactivation. Ongoing immune dysregulation may represent specific clinical risks for exploration-class space missions

    Fatigue in Medical Residents Leads to Reactivation of Herpes Virus Latency

    Get PDF
    The main objective of this study was to detect fatigue-induced clinical symptoms of immune suppression in medical residents. Samples were collected from the subjects at rest, following the first night (low-stress), and the last night (high-stress) of night float. Computerized reaction tests, Epworth Sleepiness Scale, and Wellness Profile questionnaires were used to quantify fatigue level. DNA of human herpes viruses HSV-1, VZV, EBV, as well as cortisol and melatonin concentrations, were measured in saliva. Residents at the high-stress interval reported being sleepier compared to the rest interval. EBV DNA level increased significantly at both stress intervals, while VZV DNA level increased only at low-stress. DNA levels of HSV-1 decreased at low-stress but increased at high-stress. Combined assessment of the viral DNA showed significant effect of stress on herpes virus reactivation at both stress intervals. Cortisol concentrations at both stress intervals were significantly higher than those at rest

    Plasma Cytokine Concentrations Indicate In-vivo Hormonal Regulation of Immunity is Altered During Long-Duration Spaceflight

    Get PDF
    Background: Aspects of immune system dysregulation associated with longduration spaceflight have yet to be fully characterized, and may represent a clinical risk to crewmembers during deep space missions. Plasma cytokine concentration may serve as an indicator of in vivo physiological changes or immune system mobilization. Methods: The plasma concentrations of 22 cytokines were monitored in 28 astronauts during longduration spaceflight onboard the International Space Station. Blood samples were collected three times before flight, 35 times during flight (depending on mission duration), at landing and 30 days postlanding. Analysis was performed by bead array immunoassay. Results: With few exceptions, minimal detectable mean plasma levels (<10 pg/ml) were observed at baseline (launch minus 180) for innate inflammatory cytokines or adaptive regulatory cytokines, however IL1ra and several chemokines were constitutively present. An increase in the plasma concentration IL8, IL1ra, Tpo, CCL4, CXCL5, TNF(alpha), GMCSF and VEGF was observed associated with spaceflight. Significant postflight increases were observed for IL6 and CCL2. No significant alterations were observed during or following spaceflight for adaptive/Tregulatory cytokines (IL2, IFN(gamma), IL17, IL4, IL5, IL10). Conclusions: This pattern of cytokine dysregulation suggests multiple physiological adaptations persist during flight, including inflammation, leukocyte recruitment, angiogenesis and thrombocyte regulation

    Integrated Immune

    Get PDF
    This slide presentation reviews the program to replace several recent studies about astronaut immune systems with one comprehensive study that will include in-flight sampling. The study will address lack of in-flight data to determine the inflight status of immune systems, physiological stress, viral immunity, to determine the clinical risk related to immune dysregulation for exploration class spaceflight, and to determine the appropriate monitoring strategy for spaceflight-associated immune dysfunction, that could be used for the evaluation of countermeasures

    Characterization of extended co-culture of non-typeable Haemophilus influenzae with primary human respiratory tissues

    Get PDF
    Non-typeable Haemophilus influenzae (NTHi) are human-adapted Gram-negative bacteria that comprise part of the normal flora of the human upper airway, but are also responsible for a number of mucosal infections such as otitis media and bronchitis. These infections often recur and can become chronic. To characterize the effect of long-term co-culture of NTHi with human tissues, we infected primary respiratory epithelial cells grown at the air–liquid interface with three NTHi strains over a range of 1–10 days. Scanning and transmission electron microscopy of tissues confirmed that intact NTHi were persisting paracellularly, while organisms observed in intracellular vacuoles appeared degraded. Furthermore, the apical surface and tight junctions of the infected tissues were undisturbed, with high transepithelial electrical resistances, while the basal cell layer displayed more junctional disorganization and wider intercellular spaces than the uninfected control tissues. Although the tissues elaborated the cytokine profile reported for NTHi-caused otitis media in vivo, there was little change in the dynamics of cytokine secretion over the time points tested. Finally, we report that NTHi strains released outer membrane vesicles (OMVs) during extended co-culture with the tissues, and show that these OMVs directly interact with host cell membranes

    Epstein–Barr virus LMP2A imposes sensitivity to apoptosis

    Get PDF
    In cell lines, the Epstein–Barr virus (EBV)-encoded protein latent membrane protein 2A (LMP2A) protects B-cells from apoptosis by blocking B-cell receptor (BCR) signalling. However, EBV-infected B-cells in vivo are extremely different from cell lines. This study used a murine transgenic model in which B-cells express LMP2A and a BCR specific for hen egg lysozyme to determine whether LMP2A protects resting and antigen-activated B-cells from apoptosis. LMP2A allows BCR signal transduction and induces constitutive activation of NF-κB to increase Bcl-2 levels that afford LMP2A-mediated protection from apoptosis in the absence or presence of antigen. In contrast, low levels of NF-κB inhibitor only affected Bcl-2 and Bcl-xL levels and increased apoptosis in LMP2A-negative B-cells after BCR cross-linking. These data suggest that LMP2A uniquely makes resting B-cells sensitive to NF-κB inhibition and apoptosis and suggest that NF-κB may be a novel target to eradicate latently EBV-infected B-cells
    corecore