111 research outputs found

    Rupture of multiple parallel molecular bonds under dynamic loading

    Full text link
    Biological adhesion often involves several pairs of specific receptor-ligand molecules. Using rate equations, we study theoretically the rupture of such multiple parallel bonds under dynamic loading assisted by thermal activation. For a simple generic type of cooperativity, both the rupture time and force exhibit several different scaling regimes. The dependence of the rupture force on the number of bonds is predicted to be either linear, like a square root or logarithmic.Comment: 8 pages, 2 figure

    Elastic deformation of a fluid membrane upon colloid binding

    Full text link
    When a colloidal particle adheres to a fluid membrane, it induces elastic deformations in the membrane which oppose its own binding. The structural and energetic aspects of this balance are theoretically studied within the framework of a Helfrich Hamiltonian. Based on the full nonlinear shape equations for the membrane profile, a line of continuous binding transitions and a second line of discontinuous envelopment transitions are found, which meet at an unusual triple point. The regime of low tension is studied analytically using a small gradient expansion, while in the limit of large tension scaling arguments are derived which quantify the asymptotic behavior of phase boundary, degree of wrapping, and energy barrier. The maturation of animal viruses by budding is discussed as a biological example of such colloid-membrane interaction events.Comment: 14 pages, 9 figures, REVTeX style, follow-up on cond-mat/021242

    Dynamic force spectroscopy on multiple bonds: experiments and model

    Full text link
    We probe the dynamic strength of multiple biotin-streptavidin adhesion bonds under linear loading using the biomembrane force probe setup for dynamic force spectroscopy. Measured rupture force histograms are compared to results from a master equation model for the stochastic dynamics of bond rupture under load. This allows us to extract the distribution of the number of initially closed bonds. We also extract the molecular parameters of the adhesion bonds, in good agreement with earlier results from single bond experiments. Our analysis shows that the peaks in the measured histograms are not simple multiples of the single bond values, but follow from a superposition procedure which generates different peak positions.Comment: to appear in Europhysics Letter

    Gorenstein homological algebra and universal coefficient theorems

    Get PDF
    We study criteria for a ring—or more generally, for a small category—to be Gorenstein and for a module over it to be of finite projective dimension. The goal is to unify the universal coefficient theorems found in the literature and to develop machinery for proving new ones. Among the universal coefficient theorems covered by our methods we find, besides all the classic examples, several exotic examples arising from the KK-theory of C*-algebras and also Neeman’s Brown–Adams representability theorem for compactly generated categories

    Cycle-finite module categories

    Get PDF
    We describe the structure of module categories of finite dimensional algebras over an algebraically closed field for which the cycles of nonzero nonisomorphisms between indecomposable finite dimensional modules are finite (do not belong to the infinite Jacobson radical of the module category). Moreover, geometric and homological properties of these module categories are exhibited

    Teaching Access, or Freedom of Information Law

    Get PDF
    Based on the author\u27s experience developing and administering the course and materials, this article provides an introduction and resources to teach a graduate journalism or professional law school course on access to government, commonly called freedom of information law , which may be constructed as a capstone course in law school. The appendices provide supporting material and references

    Cognitive behavioural therapy in elderly type 2 diabetes patients with minor depression or mild major depression: study protocol of a randomized controlled trial (MIND-DIA)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The global prevalence of diabetes among adults will be 6.4% in 2010 and will increase to 7.7% by 2030. Diabetes doubles the odds of depression, and 9% of patients with diabetes are affected by depressive disorders. When subclinical depression is included, the proportion of patients who have clinically relevant depressive symptoms increases to 26%. In patients aged over 65 years, the interaction of diabetes and depression has predicted increased mortality, complications, disability, and earlier occurrence of all of these adverse outcomes. These deleterious effects were observed even in minor depression, where the risk of mortality within 7 years was 4.9 times higher compared with diabetes patients who did not have depressive symptoms. In this paper we describe the design and methods of the Minor Depression and Diabetes trial, a clinical trial within the 'Competence Network for Diabetes mellitus', which is funded by the German Federal Ministry of Education and Research.</p> <p>Methods/Design</p> <p>Patients' inclusion criteria are: Type 2 diabetes mellitus, 65 to 85 years of age, 3 to 6 depressive symptoms (minor depression or mild major depression). Our aim is to compare the efficacy of diabetes-specific cognitive behavioural therapy adapted for the elderly vs. intensified treatment as usual vs. a guided self-help intervention regarding improvement of health related quality of life as the primary outcome. The trial will be conducted as a multicentre, open, observer-blinded, parallel group (3 groups) randomized controlled trial. Patients will be randomized to one of the three treatment conditions. After 12 weeks of open-label therapy in all treatment conditions, both group interventions will be reduced to one session per month during the one-year long-term phase of the trial. At the one-year follow-up, all groups will be re-examined regarding the primary and secondary parameters, for example reduction of depressive symptoms, prevention of moderate/severe major depression, improvement of glycaemic control, mortality, and cost effectiveness. Depending on additional funding, the sample will be continuously observed as a prospective cohort; the primary outcome will be changed to mortality for all subsequent follow-up measurements.</p> <p>Trial registration</p> <p>Current Controlled Trials Register (ISRCTN58007098).</p

    Defects in tRNA Modification Associated with Neurological and Developmental Dysfunctions in Caenorhabditis elegans Elongator Mutants

    Get PDF
    Elongator is a six subunit protein complex, conserved from yeast to humans. Mutations in the human Elongator homologue, hELP1, are associated with the neurological disease familial dysautonomia. However, how Elongator functions in metazoans, and how the human mutations affect neural functions is incompletely understood. Here we show that in Caenorhabditis elegans, ELPC-1 and ELPC-3, components of the Elongator complex, are required for the formation of the 5-carbamoylmethyl and 5-methylcarboxymethyl side chains of wobble uridines in tRNA. The lack of these modifications leads to defects in translation in C. elegans. ELPC-1::GFP and ELPC-3::GFP reporters are strongly expressed in a subset of chemosensory neurons required for salt chemotaxis learning. elpc-1 or elpc-3 gene inactivation causes a defect in this process, associated with a posttranscriptional reduction of neuropeptide and a decreased accumulation of acetylcholine in the synaptic cleft. elpc-1 and elpc-3 mutations are synthetic lethal together with those in tuc-1, which is required for thiolation of tRNAs having the 5′methylcarboxymethyl side chain. elpc-1; tuc-1 and elpc-3; tuc-1 double mutants display developmental defects. Our results suggest that, by its effect on tRNA modification, Elongator promotes both neural function and development

    Virus Movements on the Plasma Membrane Support Infection and Transmission between Cells

    Get PDF
    How viruses are transmitted across the mucosal epithelia of the respiratory, digestive, or excretory tracts, and how they spread from cell to cell and cause systemic infections, is incompletely understood. Recent advances from single virus tracking experiments have revealed conserved patterns of virus movements on the plasma membrane, including diffusive motions, drifting motions depending on retrograde flow of actin filaments or actin tail formation by polymerization, and confinement to submicrometer areas. Here, we discuss how viruses take advantage of cellular mechanisms that normally drive the movements of proteins and lipids on the cell surface. A concept emerges where short periods of fast diffusive motions allow viruses to rapidly move over several micrometers. Coupling to actin flow supports directional transport of virus particles during entry and cell-cell transmission, and local confinement coincides with either nonproductive stalling or infectious endocytic uptake. These conserved features of virus–host interactions upstream of infectious entry offer new perspectives for anti-viral interference
    corecore