258 research outputs found
Pushing the efficiency of StereoNet: exploiting spatial sparsity
Current CNN-based stereo matching methods have demonstrated superior performance compared to traditional stereo matching methods. However, mapping these algorithms into embedded devices, which exhibit limited compute resources, and achieving high performance is a challenging task due to the high computational complexity of the CNN-based methods. The recently proposed StereoNet network, achieves disparity estimation with reduced complexity, whereas performance does not greatly deteriorate. Towards pushing this performance to complexity trade-off further, we propose an optimization applied to StereoNet that adapts the computations to the input data, steering the computations to the regions of the input that would benefit from the application of the CNN-based stereo matching algorithm, where the rest of the input is processed by a traditional, less computationally demanding method. Key to the proposed methodology is the introduction of a lightweight CNN that predicts the importance of r efining a region of the input to the quality of the final disparity map, allowing the system to trade-off computational complexity for disparity error on-demand, enabling the application of these methods to embedded systems with real-time requirements
WTA/TLA: A UAV-captured dataset for semantic segmentation of energy infrastructure
Automated inspection of energy infrastructure with Unmanned Aerial Vehicles (UAVs) is becoming increasingly important, exhibiting significant advantages over manual inspection, including improved scalability, cost/time effectiveness, and risks reduction. Although recent technological advancements enabled the collection of an abundance of vision data from UAVs’ sensors, significant efforts are still required from experts to interpret manually the collected data and assess the condition of energy infrastructure. Thus, semantic understanding of vision data collected from UAVs during inspection is a critical prerequisite for performing autonomous robotic tasks. However, the lack of labeled data introduces challenges and limitations in evaluating the performance of semantic prediction algorithms. To this end, we release two novel semantic datasets (WTA and TLA) of aerial images captured from power transmission networks and wind turbine farms, collected during real inspection scenarios with UAVs. We also propose modifications to existing state-of-the-art semantic segmentation CNNs to achieve improved trade-off between accuracy and computational complexity. Qualitative and quantitative experiments demonstrate both the challenging properties of the provided dataset and the effectiveness of the proposed networks in this domain.The dataset is available at: https://github.com/gzamps/wta_tla_dataset
Security for smart mobile networks: The NEMESYS approach
The growing popularity of smart mobile devices such as smartphones and tablets has made them an attractive target for cyber-criminals, resulting in a rapidly growing and evolving mobile threat as attackers experiment with new business models by targeting mobile users. With the emergence of the first large-scale mobile botnets, the core network has also become vulnerable to distributed denial-of-service attacks such as the signaling attack. Furthermore, complementary access methods such as Wi-Fi and femtocells introduce additional vulnerabilities for the mobile users as well as the core network. In this paper, we present the NEMESYS approach to smart mobile network security, to develop novel security technologies for seamless service provisioning in the smart mobile ecosystem, and to improve mobile network security through a better understanding of the threat landscape
GHOST - safe-guarding home IoT environments with personalised real-time risk control
We present the European research project GHOST, (Safe-guarding home IoT environments with personalised real-time risk control), which challenges the traditional cyber security solutions for the IoT by proposing a novel reference architecture that is embedded in an adequately adapted smart home network gateway, and designed to be vendor-independent. GHOST proposes to lead a paradigm shift in consumer cyber security by coupling usable security with transparency and behavioural engineering
Developing an infrastructure for secure patient summary exchange in the EU context: Lessons learned from the KONFIDO project
Background: The increase of healthcare digitalization comes along with potential information security risks. Thus, the EU H2020 KONFIDO project aimed to provide a toolkit supporting secure cross-border health data exchange. Methods: KONFIDO focused on the so-called “User Goals”, while also identifying barriers and facilitators regarding eHealth acceptance. Key user scenarios were elaborated both in terms of threat analysis and legal challenges. Moreover, KONFIDO developed a toolkit aiming to enhance the security of OpenNCP, the reference implementation framework. Results: The main project outcomes are highlighted and the “Lessons Learned,” the technical challenges and the EU context are detailed. Conclusions: The main “Lessons Learned” are summarized and a set of recommendations is provided, presenting the position of the KONFIDO consortium toward a robust EU-wide health data exchange infrastructure. To this end, the lack of infrastructure and technical capacity is highlighted, legal and policy challenges are identified and the need to focus on usability and semantic interoperability is emphasized. Regarding technical issues, an emphasis on transparent and standards-based development processes is recommended, especially for landmark software projects. Finally, promoting mentality change and knowledge dissemination is also identified as key step toward the development of secure cross-border health data exchange services
Effectiveness of myAirCoach: A mHealth Self-Management System in Asthma
Background: Self-management programs have beneficial effects on asthma control, but their implementation in clinical practice is poor. Mobile health (mHealth) could play an important role in enhancing self-management. Objective: To assess the clinical effectiveness and technology acceptance of myAirCoach-supported self-management on top of usual care in patients with asthma using inhalation medication. Methods: Patients were recruited in 2 separate studies. The myAirCoach system consisted of an inhaler adapter, an indoor air-quality monitor, a physical activity tracker, a portable spirometer, a fraction exhaled nitric oxide device, and an app. The primary outcome was asthma control; secondary outcomes were exacerbations, quality of life, and technology acceptance. In study 1, 30 participants were randomized to either usual care or myAirCoach support for 3 to 6 months; in study 2, 12 participants were provided with the myAirCoach system in a 3-month before-after study. Results: In study 1, asthma control improved in the intervention group compared with controls (Asthma Control Questionnaire difference, 0.70; P = .006). A total of 6 exacerbations occurred in the intervention group compared with 12 in the control group (hazard ratio, 0.31; P = .06). Asthma-related quality of life improved (mini Asthma-related Quality of Life Questionnaire difference, 0.53; P = .04), but forced expiratory volume in 1 second was unchanged. In study 2, asthma control improved by 0.86 compared with baseline (P = .007) and quality of life by 0.16 (P = .64). Participants reported positive attitudes toward the system. Discussion: Using the myAirCoach support system improves asthma control and quality of life, with a reduction in severe asthma exacerbations. Well-validated mHealth technologies should therefore be further studied
Sci-Hub provides access to nearly all scholarly literature
The website Sci-Hub enables users to download PDF versions of scholarly articles, including many articles that are paywalled at their journal\u27s site. Sci-Hub has grown rapidly since its creation in 2011, but the extent of its coverage was unclear. Here we report that, as of March 2017, Sci-Hub\u27s database contains 68.9% of the 81.6 million scholarly articles registered with Crossref and 85.1% of articles published in toll access journals. We find that coverage varies by discipline and publisher, and that Sci-Hub preferentially covers popular, paywalled content. For toll access articles, we find that Sci-Hub provides greater coverage than the University of Pennsylvania, a major research university in the United States. Green open access to toll access articles via licit services, on the other hand, remains quite limited. Our interactive browser at https://greenelab.github.io/scihub allows users to explore these findings in more detail. For the first time, nearly all scholarly literature is available gratis to anyone with an Internet connection, suggesting the toll access business model may become unsustainable
Substance deposition assessment in obstructed pulmonary system through numerical characterization of airflow and inhaled particles attributes
Background Chronic obstructive pulmonary disease (COPD) and asthma are considered as the two most widespread obstructive lung diseases, whereas they affect more than 500 million people worldwide. Unfortunately, the requirement for detailed geometric models of the lungs in combination with the increased computational resources needed for the simulation of the breathing did not allow great progress to be made in the past for the better understanding of inflammatory diseases of the airways through detailed modelling approaches. In this context, computational fluid dynamics (CFD) simulations accompanied by fluid particle tracing (FPT) analysis of the inhaled ambient particles are deemed critical for lung function assessment. Also they enable the understanding of particle depositions on the airways of patients, since these accumulations may affect or lead to inflammations. In this direction, the current study conducts an initial investigation for the better comprehension of particle deposition within the lungs. More specifically, accurate models of the airways obstructions that relate to pulmonary disease are developed and a thorough assessment of the airflow behavior together with identification of the effects of inhaled particle properties, such as size and density, is conducted. Our approach presents a first step towards an effective personalization of pulmonary treatment in regards to the geometric characteristics of the lungs and the in depth understanding of airflows within the airways. Methods A geometry processing technique involving contraction algorithms is established and used to employ the different respiratory arrangements associated with lung related diseases that exhibit airways obstructions. Apart from the normal lung case, two categories of obstructed cases are examined, i.e. models with obstructions in both lungs and models with narrowings in the right lung only. Precise assumptions regarding airflow and deposition fraction (DF) over various sections of the lungs are drawn by simulating these distinct incidents through the finite volume method (FVM) and particularly the CFD and FPT algorithms. Moreover, a detailed parametric analysis clarifies the effects of the particles size and density in terms of regional deposition upon several parts of the pulmonary system. In this manner, the deposition pattern of various substances can be assessed. Results For the specific case of the unobstructed lung model most particles are detected on the right lung (48.56% of total, when the air flowrate is 12.6 L/min), a fact that is also true when obstructions arise symmetrically in both lungs (51.45% of total, when the air flowrate is 6.06 L/min and obstructions occur after the second generation). In contrast, when narrowings are developed on the right lung only, most particles are pushed on the left section (68.22% of total, when the air flowrate is 11.2 L/min) indicating that inhaled medication is generally deposited away from the areas of inflammation. This observation is useful when designing medical treatment of lung diseases. Furthermore, particles with diameters from 1 μm to 10 μm are shown to be mainly deposited on the lower airways, whereas particles with diameters of 20 μm and 30 μm are mostly accumulated in the upper airways. As a result, the current analysis indicates increased DF levels in the upper airways when the particle diameter is enlarged. Additionally, when the particles density increases from 1000 Kg/m3 to 2000 Kg/m3, the DF is enhanced on every generation and for all cases investigated herein. The results obtained by our simulations provide an accurate and quantitative estimation of all important parameters involved in lung modeling. Conclusions The treatment of respiratory diseases with inhaled medical substances can be advanced by the clinical use of accurate CFD and FPT simulations and specifically by evaluating the deposition of inhaled particles in a regional oriented perspective in regards to different particle sizes and particle densities. Since a drug with specific characteristics (i.e. particle size and density) exhibits maximum deposition on particular lung areas, the current study provides initial indications to a qualified physician for proper selection of medication
ECSA's Characteristics of Citizen Science: Explanation Notes
This explanation document provides an interpretation of and explanation for the characteristics document, which was kept short to make it useful to different stakeholders. In this document, the characteristics document is represented, with the original text in blue and an explanation in black
The European cross-border health data exchange roadmap: case study in the Italian setting
Health data exchange is a major challenge due to the sensitive information and the privacy issues entailed. Considering the European context, in which health data must be exchanged between different European Union (EU) Member States, each having a different national regulatory framework as well as different national healthcare structures, the challenge appears even greater. Europe has tried to address this challenge via the epSOS (“Smart Open Services for European Patients”) project in 2008, a European large-scale pilot on cross-border sharing of specific health data and services. The adoption of the framework is an ongoing activity, with most Member States planning its implementation by 2020. Yet, this framework is quite generic and leaves a wide space to each EU Member State regarding the definition of roles, processes, workflows and especially the specific integration with the National Infrastructures for eHealth. The aim of this paper is to present the current landscape of the evolving eHealth infrastructure for cross-border health data exchange in Europe, as a result of past and ongoing initiatives, and illustrate challenges, open issues and limitations through a specific case study describing how Italy is approaching its adoption and accommodates the identified barriers. To this end, the paper discusses ethical, regulatory and organizational issues, also focusing on technical aspects, such as interoperability and cybersecurity. Regarding cybersecurity aspects per se, we present the approach of the KONFIDO EU-funded project, which aims to reinforce trust and security in European cross-border health data exchange by leveraging novel approaches and cutting-edge technologies, such as homomorphic encryption, photonic Physical Unclonable Functions (p-PUF), a Security Information and Event Management (SIEM) system, and blockchain-based auditing. In particular, we explain how KONFIDO will test its outcomes through a dedicated pilot based on a realistic scenario, in which Italy is involved in health data exchange with other European countries
- …