111 research outputs found
Crystal Structure of the Monomeric Extracellular Domain of α9 Nicotinic Receptor Subunit in Complex With α-Conotoxin RgIA: Molecular Dynamics Insights Into RgIA Binding to α9α10 Nicotinic Receptors
The α9 subunit of nicotinic acetylcholine receptors (nAChRs) exists mainly in heteropentameric assemblies with α10. Accumulating data indicate the presence of three different binding sites in α9α10 nAChRs: the α9(+)/α9(â), the α9(+)/α10(â), and the α10(+)/α9(â). The major role of the principal (+) side of the extracellular domain (ECD) of α9 subunit in binding of the antagonists methyllylcaconitine and α-bungarotoxin was shown previously by the crystal structures of the monomeric α9-ECD with these molecules. Here we present the 2.26-Ă
resolution crystal structure of α9-ECD in complex with α-conotoxin (α-Ctx) RgIA, a potential drug for chronic pain, the first structure reported for a complex between an nAChR domain and an α-Ctx. Superposition of this structure with those of other α-Ctxs bound to the homologous pentameric acetylcholine binding proteins revealed significant similarities in the orientation of bound conotoxins, despite the monomeric state of the α9-ECD. In addition, ligand-binding studies calculated a binding affinity of RgIA to the α9-ECD at the low micromolar range. Given the high identity between α9 and α10 ECDs, particularly at their (+) sides, the presented structure was used as template for molecular dynamics simulations of the ECDs of the human α9α10 nAChR in pentameric assemblies. Our results support a favorable binding of RgIA at α9(+)/α9(â) or α10(+)/α9(â) rather than the α9(+)/α10(â) interface, in accordance with previous mutational and functional data
Guidelines for pre-clinical assessment of the acetylcholine receptor-specific passive transfer myasthenia gravis model - recommendations for methods and experimental designs.
Antibodies against the muscle acetylcholine receptor (AChR) are the most common cause of myasthenia gravis (MG). Passive transfer of AChR antibodies from MG patients into animals reproduces key features of human disease, including antigenic modulation of the AChR, complement-mediated damage of the neuromuscular junction, and muscle weakness. Similarly, AChR antibodies generated by active immunization in experimental autoimmune MG models can subsequently be passively transferred to other animals and induce weakness. The passive transfer model is useful to test therapeutic strategies aimed at the effector mechanism of the autoantibodies. Here we summarize published and unpublished experience using the AChR passive transfer MG model in mice, rats and rhesus monkeys, and give recommendations for the design of preclinical studies in order to facilitate translation of positive and negative results to improve MG therapies
Transmembrane orientation of an early biosynthetic form of acetylcholine receptor delta subunit determined by proteolytic dissection in conjunction with monoclonal antibodies
The transmembrane topology of acetylcholine receptor (AChR) delta subunit, synthesized in vitro and co-translationally integrated into dog pancreas rough microsomal membranes, was studied using limited proteolysis and domain-specific immunoprecipitation. Forty-four kilodaltons (kd) of the 65-kd delta subunit comprise a single fragment that is inaccessible to exhaustive proteolytic digestion from the cytoplasmic surface of the membrane by trypsin, chymotrypsin, thermolysin, and pronase. Previously, we have shown that this 44-kd âprotectedâ fragment contains the amino terminus of the intact molecule and all of the core oligosaccharides (Anderson, D.J., P. Walter, and G. Blobel (1982) J. Cell Biol. 93: 501â506). Here we demonstrate that this domain can be further dissected into a 26-kd fragment, together with low molecular weight material, when the membranes are rendered permeable to trypsin by low concentrations of deoxycholate (Kreibich, G., P. Debey, and D. D. Sabatini (1973) J. Cell Biol. 58: 436â462). This 26-kd fragment contains all of the core oligosaccharides present on the intact subunit and therefore constitutes at least part, if not all, of the extracellular domain. The remaining low molecular weight material may derive from the membrane-embedded domain; our data imply that as much as 18 kd may be internal to the lipid bilayer. On the other hand, part of the cytoplasmic pole of AChR-delta can be recovered as a discrete, 12-kd fragment upon mild trypsinization of intact vesicles. We have used this 12-kd fragment to identify anti-AChR-delta monoclonal antibodies (mAbs) that react with the cytoplasmic domain of this subunit. Partial proteolytic fragmentation of the AChR in vitro translation products, in topologically well defined rough microsomes, may be used as a general assay to characterize the domain specificity of anti-AChR mAbs. For example, in the case of AChR-beta, we were able to identify two mAbs that recognize extracellular and cytoplasmic fragments, respectively
A Striational Muscle Antigen and Myasthenia Gravis-Associated Thymomas Share an Acetylcholine-Receptor Epitope
The coincidence of autoantibodies against the acetylcholine receptor (AChR) and muscle
striational antigens (SA) is a characteristic finding in thymoma-associated myasthenia
gravis (MG), but their origins are still unresolved. Some common muscle antigens that
were shown to be targets of anti-SA autoantibodies in thymoma-associated MG have
also been detected in normal or neoplastic thymic epithelial cells, suggesting that the
release of (eventually altered) antigens from the thymic tumors could elicit SA
autoimmunity. In contrast to this model, we report here that titin, which is a recently
reported target of SA autoimmunity, is not expressed in thymomas. In addition, we
show that skeletal muscle type-II fibers exhibit a striational immunoreactivity with
monoclonal antibody mAb155, which was previously identified to label a very
immunogenic cytoplasmic epitope of the AChR and neoplastic epithelial cells of MGassociated
thymomas. We conclude from these findings that titin autoimmunity in
thymoma-associated MG is either due to a molecular mimicry mechanism involving
tumor antigens (other than titin) or is a secondary phenomenon following release of titin
from muscle. Based on the common immunoreactivity of the AChR, a striational antigen
and thymoma, we suggest as the pathogenetic mechanism of thymoma-associated MGa
"circulus vitiosus" in which SA autoimmunity could help maintain the AChR
autoimmunity that is primarily elicited by the thymomas
Neuronal nicotinic acetylcholine receptor antibodies in autoimmune central nervous system disorders
BackgroundNeuronal nicotinic acetylcholine receptors (nAChRs) are abundant in the central nervous system (CNS), playing critical roles in brain function. Antigenicity of nAChRs has been well demonstrated with antibodies to ganglionic AChR subtypes (i.e., subunit α3 of α3ÎČ4-nAChR) and muscle AChR autoantibodies, thus making nAChRs candidate autoantigens in autoimmune CNS disorders. Antibodies to several membrane receptors, like NMDAR, have been identified in autoimmune encephalitis syndromes (AES), but many AES patients have yet to be unidentified for autoantibodies. This study aimed to develop of a cell-based assay (CBA) that selectively detects potentially pathogenic antibodies to subunits of the major nAChR subtypes (α4ÎČ2- and α7-nAChRs) and its use for the identification of such antibodies in âorphanâ AES cases.MethodsThe study involved screening of sera derived from 1752 patients from Greece, Turkey and Italy, who requested testing for AES-associated antibodies, and from 1203 âcontrolâ patients with other neuropsychiatric diseases, from the same countries or from Germany. A sensitive live-CBA with α4ÎČ2-or α7-nAChRâtransfected cells was developed to detect antibodies against extracellular domains of nAChR major subunits. Flow cytometry (FACS) was performed to confirm the CBA findings and indirect immunohistochemistry (IHC) to investigate serum autoantibodiesâ binding to rat brain tissue.ResultsThree patients were found to be positive for serum antibodies against nAChR α4 subunit by CBA and the presence of the specific antibodies was quantitatively confirmed by FACS. We detected specific binding of patientâderived serum antiânAChR α4 subunit antibodies to rat cerebellum and hippocampus tissue. No serum antibodies bound to the α7-nAChR-transfected or control-transfected cells, and no control serum antibodies bound to the transfected cells. All patients positive for serum antiânAChRs α4 subunit antibodies were negative for other AES-associated antibodies. All three of the antiânAChR α4 subunit serum antibody-positive patients fall into the AES spectrum, with one having Rasmussen encephalitis, another autoimmune meningoencephalomyelitis and another being diagnosed with possible autoimmune encephalitis.ConclusionThis study lends credence to the hypothesis that the major nAChR subunits are autoimmune targets in some cases of AES and establishes a sensitive live-CBA for the identification of such patients
A retrospective multicenter study on clinical and serological parameters in patients with MuSK myasthenia gravis with and without general immunosuppression
Introduction: Muscle-specific kinase (MuSK)- myasthenia gravis (MG) is caused by pathogenic autoantibodies against MuSK that correlate with disease severity and are predominantly of the IgG4 subclass. The first-line treatment for MuSK-MG is general immunosuppression with corticosteroids, but the effect of treatment on IgG4 and MuSK IgG4 levels has not been studied. Methods: We analyzed the clinical data and sera from 52 MuSK-MG patients (45 female, 7 male, median age 49 (range 17â79) years) from Italy, the Netherlands, Greece and Belgium, and 43 AChR-MG patients (22 female, 21 male, median age 63 (range 2â82) years) from Italy, receiving different types of immunosuppression, and sera from 46 age- and sex-matched non-disease controls (with no diagnosed diseases, 38 female, 8 male, median age 51.5 (range 20â68) years) from the Netherlands. We analyzed the disease severity (assessed by MGFA or QMG score), and measured concentrations of MuSK IgG4, MuSK IgG, total IgG4 and total IgG in the sera by ELISA, RIA and nephelometry. Results: We observed that MuSK-MG patients showed a robust clinical improvement and reduction of MuSK IgG after therapy, and that MuSK IgG4 concentrations, but not total IgG4 concentrations, correlated with clinical severity. MuSK IgG and MuSK IgG4 concentrations were reduced after immunosuppression in 4/5 individuals with before-after data, but data from non-linked patient samples showed no difference. Total serum IgG4 levels were within the normal range, with IgG4 levels above threshold (1.35g/L) in 1/52 MuSK-MG, 2/43 AChR-MG patients and 1/45 non-disease controls. MuSK-MG patients improved within the first four years after disease onset, but no further clinical improvement or reduction of MuSK IgG4 were observed four years later, and only 14/52 (26.92%) patients in total, of which 13 (93.3%) received general immunosuppression, reached clinical remission. Discussion: We conclude that MuSK-MG patients improve clinically with general immunosuppression but may require further treatment to reach remission. Longitudinal testing of individual patients may be clinically more useful than single measurements of MuSK IgG4. No significant differences in the serum IgG4 concentrations and IgG4/IgG ratio between AChR- and MuSK-MG patients were found during follow-up. Further studies with larger patient and control cohorts are necessary to validate the findings
IgG4 autoantibodies against muscle-specific kinase undergo Fab-arm exchange in myasthenia gravis patients
Autoimmunity mediated by IgG4 subclass autoantibodies is an expanding field of research. Due to their structural characteristics a key feature of IgG4 antibodies is the ability to exchange Fab-arms with other, unrelated, IgG4 molecules, making the IgG4 molecule potentially monovalent for the specific antigen. However, whether those disease-associated antigen-specific IgG4 are mono- or divalent for their antigens is unknown. Myasthenia gravis (MG) with antibodies to muscle specific kinase (MuSK-MG) is a well-recognized disease in which the predominant pathogenic IgG4 antibody binds to extracellular epitopes on MuSK at the neuromuscular junction; this inhibits a pathway that clusters the acetylcholine (neurotransmitter) receptors and leads to failure of neuromuscular transmission. In vitro Fab-arm exchange-inducing conditions were applied to MuSK antibodies in sera, purified IgG4 and IgG1-3 sub-fractions. Solid-phase cross-linking assays were established to determine the extent of pre-existing and inducible Fab-arm exchange. Functional effects of the resulting populations of IgG4 antibodies were determined by measuring inhibition of agrin-induced AChR clustering in C2C12 cells. To confirm the results, Îș/Îș, λ/λ and hybrid Îș/λ IgG4s were isolated and tested for MuSK antibodies. At least fifty percent of patients had IgG4, but not IgG1-3, MuSK antibodies that could undergo Fab-arm exchange in vitro under reducing conditions. Also MuSK antibodies were found in vivo that were divalent (monospecific for MuSK). Fab-arm exchange with normal human IgG4 did not prevent the inhibitory effect of serum derived MuSK antibodies on AChR clustering in C2C12 mouse myotubes. The results suggest that a considerable proportion of MuSK IgG4 could already be Fab-arm exchanged in vivo. This was confirmed by isolating endogenous IgG4 MuSK antibodies containing both Îș and λ light chains, i.e. hybrid IgG4 molecules. These new findings demonstrate that Fab-arm exchanged antibodies are pathogenic. publisher: Elsevier articletitle: IgG4 autoantibodies against muscle-specific kinase undergo Fab-arm exchange in myasthenia gravis patients journaltitle: Journal of Autoimmunity articlelink: http://dx.doi.org/10.1016/j.jaut.2016.11.005 content_type: article copyright: © 2016 The Authors. Published by Elsevier Ltd. ispartof: Journal of Autoimmunity vol:77 pages:104-115 ispartof: location:England status: publishe
VAV1 and BAFF, via NFÎșB pathway, are genetic risk factors for myasthenia gravis
Objective To identify novel genetic loci that predispose to earlyâonset myasthenia gravis (EOMG) applying a twoâstage association study, exploration, and replication strategy. Methods Thirtyâfour loci and one confirmation loci, human leukocyte antigen (HLA)âDRA, were selected as candidate genes by team members of groups involved in different research aspects of MG. In the exploration step, these candidate genes were genotyped in 384 EOMG and 384 matched controls and significant difference in allele frequency were found in eight genes. In the replication step, eight candidate genes and one confirmation loci were genotyped in 1177 EOMG patients and 814 controls, from nine European centres. Results Allele frequency differences were found in four novel loci: CD86, AKAP12, VAV1, Bâcell activating factor (BAFF), and tumor necrosis factorâalpha (TNFâα), and these differences were consistent in all nine cohorts. Haplotype trend test supported the differences in allele frequencies between cases and controls. In addition, allele frequency difference in female versus male patients at HLAâDRA and TNFâα loci were observed. Interpretation The genetic associations to EOMG outside the HLA complex are novel and of interest as VAV1 is a key signal transducer essential for Tâ and Bâcell activation, and BAFF is a cytokine that plays important roles in the proliferation and differentiation of Bâcells. Moreover, we noted striking epistasis between the predisposing VAV1 and BAFF haplotypes; they conferred a greater risk in combination than alone. These, and CD86, share the same signaling pathway, namely nuclear factorâkappaB (NFÎșB), thus implicating dysregulation of proinflammatory signaling in predisposition to EOMG
- âŠ