14 research outputs found
Attenuation of Notch and Hedgehog Signaling Is Required for Fate Specification in the Spinal Cord
During the development of the spinal cord, proliferative neural progenitors differentiate into postmitotic neurons with distinct fates. How cells switch from progenitor states to differentiated fates is poorly understood. To address this question, we studied the differentiation of progenitors in the zebrafish spinal cord, focusing on the differentiation of Kolmer-Agduhr″ (KA″) interneurons from lateral floor plate (LFP) progenitors. In vivo cell tracking demonstrates that KA″ cells are generated from LFP progenitors by both symmetric and asymmetric cell divisions. A photoconvertible reporter of signaling history (PHRESH) reveals distinct temporal profiles of Hh response: LFP progenitors continuously respond to Hh, while KA″ cells lose Hh response upon differentiation. Hh signaling is required in LFP progenitors for KA″ fate specification, but prolonged Hh signaling interferes with KA″ differentiation. Notch signaling acts permissively to maintain LFP progenitor cells: activation of Notch signaling prevents differentiation, whereas inhibition of Notch signaling results in differentiation of ectopic KA″ cells. These results indicate that neural progenitors depend on Notch signaling to maintain Hh responsiveness and rely on Hh signaling to induce fate identity, whereas proper differentiation depends on the attenuation of both Notch and Hh signaling
Point Mutations in GLI3 Lead to Misregulation of its Subcellular Localization
Background
Mutations in the transcription factor GLI3, a downstream target of Sonic Hedgehog (SHH) signaling, are responsible for the development of malformation syndromes such as Greig-cephalopolysyndactyly-syndrome (GCPS), or Pallister-Hall-syndrome (PHS). Mutations that lead to loss of function of the protein and to haploinsufficiency cause GCPS, while truncating mutations that result in constitutive repressor function of GLI3 lead to PHS. As an exception, some point mutations in the C-terminal part of GLI3 observed in GCPS patients have so far not been linked to loss of function. We have shown recently that protein phosphatase 2A (PP2A) regulates the nuclear localization and transcriptional activity a of GLI3 function.
Principal Findings
We have shown recently that protein phosphatase 2A (PP2A) and the ubiquitin ligase MID1 regulate the nuclear localization and transcriptional activity of GLI3. Here we show mapping of the functional interaction between the MID1-α4-PP2A complex and GLI3 to a region between amino acid 568-1100 of GLI3. Furthermore we demonstrate that GCPS-associated point mutations, that are located in that region, lead to misregulation of the nuclear GLI3-localization and transcriptional activity. GLI3 phosphorylation itself however appears independent of its localization and remains untouched by either of the point mutations and by PP2A-activity, which suggests involvement of an as yet unknown GLI3 interaction partner, the phosphorylation status of which is regulated by PP2A activity, in the control of GLI3 subcellular localization and activity.
Conclusions
The present findings provide an explanation for the pathogenesis of GCPS in patients carrying C-terminal point mutations, and close the gap in our understanding of how GLI3-genotypes give rise to particular phenotypes. Furthermore, they provide a molecular explanation for the phenotypic overlap between Opitz syndrome patients with dysregulated PP2A-activity and syndromes caused by GLI3-mutations
Human GLI3 Intragenic Conserved Non-Coding Sequences Are Tissue-Specific Enhancers
The zinc-finger transcription factor GLI3 is a key regulator of development, acting as a primary transducer of Sonic hedgehog (SHH) signaling in a combinatorial context dependent fashion controlling multiple patterning steps in different tissues/organs. A tight temporal and spatial control of gene expression is indispensable, however, cis-acting sequence elements regulating GLI3 expression have not yet been reported. We show that 11 ancient genomic DNA signatures, conserved from the pufferfish Takifugu (Fugu) rubripes to man, are distributed throughout the introns of human GLI3. They map within larger conserved non-coding elements (CNEs) that are found in the tetrapod lineage. Full length CNEs transiently transfected into human cell cultures acted as cell type specific enhancers of gene transcription. The regulatory potential of these elements is conserved and was exploited to direct tissue specific expression of a reporter gene in zebrafish embryos. Assays of deletion constructs revealed that the human-Fugu conserved sequences within the GLI3 intronic CNEs were essential but not sufficient for full-scale transcriptional activation. The enhancer activity of the CNEs is determined by a combinatorial effect of a core sequence conserved between human and teleosts (Fugu) and flanking tetrapod-specific sequences, suggesting that successive clustering of sequences with regulatory potential around an ancient, highly conserved nucleus might be a possible mechanism for the evolution of cis-acting regulatory elements
Visualization of Gli Activity in Craniofacial Tissues of Hedgehog-Pathway Reporter Transgenic Zebrafish
The Hedgehog (Hh)-signaling pathway plays a crucial role in the development and maintenance of multiple vertebrate and invertebrate organ systems. Gli transcription factors are regulated by Hh-signaling and act as downstream effectors of the pathway to activate Hh-target genes. Understanding the requirements for Hh-signaling in organisms can be gained by assessing Gli activity in a spatial and temporal fashion.We have generated a Gli-dependent (Gli-d) transgenic line, Tg(Gli-d:mCherry), that allows for rapid and simple detection of Hh-responding cell populations in both live and fixed zebrafish. This transgenic line expresses a mCherry reporter under the control of a Gli responsive promoter, which can be followed by using fluorescent microscopy and in situ hybridization. Expression of the mCherry transgene reporter during embryogenesis and early larval development faithfully replicated known expression domains of Hh-signaling in zebrafish, and abrogating Hh-signaling in transgenic fish resulted in the suppression of reporter expression. Moreover, ectopic shh expression in Tg(Glid:mCherry) fish led to increased transgene production. Using this transgenic line we investigated the nature of Hh-pathway response during early craniofacial development and determined that the neural crest skeletal precursors do not directly respond to Hh-signaling prior to 48 hours post fertilization, suggesting that earlier requirements for pathway activation in this population of facial skeleton precursors are indirect.We have determined that early Hh-signaling requirements in craniofacial development are indirect. We further demonstrate the Tg(Gli-d:mCherry) fish are a highly useful tool for studying Hh-signaling dependent processes during embryogenesis and larval stages
Gli function is essential for motor neuron induction in zebrafish
The Gli family of zinc-finger transcription factors mediates Hedgehog (Hh) signaling in all vertebrates. However, their roles in ventral neural tube patterning, in particular motor neuron induction, appear to have diverged across species. For instance, cranial motor neurons are essentially lost in zebrafish detour (gli1−) mutants, whereas motor neuron development is unaffected in mouse single gli and some double gli knockouts. Interestingly, the expression of some Hh-regulated genes (ptc1, net1a, gli1) is mostly unaffected in the detour mutant hindbrain, suggesting that other Gli transcriptional activators may be involved. To better define the roles of the zebrafish gli genes in motor neuron induction and in Hh-regulated gene expression, we examined these processes in you-too (yot) mutants, which encode dominant repressor forms of Gli2 (Gli2DR), and following morpholino-mediated knockdown of gli1, gli2, and gli3 function. Motor neuron induction at all axial levels was reduced in yot (gli2DR) mutant embryos. In addition, Hh target gene expression at all axial levels except in rhombomere 4 was also reduced, suggesting an interference with the function of other Glis. Indeed, morpholino-mediated knockdown of Gli2DR protein in yot mutants led to a suppression of the defective motor neuron phenotype. However, gli2 knockdown in wild-type embryos generated no discernable motor neuron phenotype, while gli3 knockdown reduced motor neuron induction in the hindbrain and spinal cord. Significantly, gli2 or gli3 knockdown in detour (gli1−) mutants revealed roles for Gli2 and Gli3 activator functions in ptc1 expression and spinal motor neuron induction. Similarly, gli1 or gli3 knockdown in yot (gli2DR) mutants resulted in severe or complete loss of motor neurons, and of ptc1 and net1a expression, in the hindbrain and spinal cord. In addition, gli1 expression was greatly reduced in yot mutants following gli3, but not gli1, knockdown, suggesting that Gli3 activator function is specifically required for gli1 expression. These observations demonstrate that Gli activator function (encoded by gli1, gli2, and gli3) is essential for motor neuron induction and Hh-regulated gene expression in zebrafish
Recommended from our members
Zebrafish Gli3 functions as both an activator and a repressor in Hedgehog signaling
537-55
Recommended from our members
Synergistic and antagonistic roles of the Sonic hedgehog N- and C-terminal lipids
4357-437
Recommended from our members
Synergistic and antagonistic roles of the Sonic hedgehog N- and C-terminal lipids
Loss of fish actinotrichia proteins and the fin-to-limb transition.
The early development of teleost paired fins is strikingly similar to that of tetrapod limb buds and is controlled by similar mechanisms. One early morphological divergence between pectoral fins and limbs is in the fate of the apical ectodermal ridge (AER), the distal epidermis that rims the bud. Whereas the AER of tetrapods regresses after specification of the skeletal progenitors, the AER of teleost fishes forms a fold that elongates. Formation of the fin fold is accompanied by the synthesis of two rows of rigid, unmineralized fibrils called actinotrichia, which keep the fold straight and guide the migration of mesenchymal cells within the fold. The actinotrichia are made of elastoidin, the components of which, apart from collagen, are unknown. Here we show that two zebrafish proteins, which we name actinodin 1 and 2 (And1 and And2), are essential structural components of elastoidin. The presence of actinodin sequences in several teleost fishes and in the elephant shark (Callorhinchus milii, which occupies a basal phylogenetic position), but not in tetrapods, suggests that these genes have been lost during tetrapod species evolution. Double gene knockdown of and1 and and2 in zebrafish embryos results in the absence of actinotrichia and impaired fin folds. Gene expression profiles in embryos lacking and1 and and2 function are consistent with pectoral fin truncation and may offer a potential explanation for the polydactyly observed in early tetrapod fossils. We propose that the loss of both actinodins and actinotrichia during evolution may have led to the loss of lepidotrichia and may have contributed to the fin-to-limb transition