701 research outputs found

    Biofuels for all? Understanding the Global Impacts of Multinational Mandates

    Get PDF
    The recent rise in world oil prices, coupled with heightened interest in the abatement of greenhouse gas emissions, has led to a sharp increase in domestic biofuels production around the world. Previous authors have devoted considerable attention to the impacts of these policies on a country-by-country basis. However, there are also strong interactions among these programs, as they compete in world markets for feedstocks and ultimately for a limited supply of global land. In this paper, we evaluate the interplay between two of the largest biofuels programs, namely the renewable fuel mandates in the US and the EU. We examine how the presence of each of these programs influences the other, and also how their combined impact influences global markets and land use around the world. We begin with an analysis of the origins of the recent bio-fuel boom, using the historical period from 2001-2006 for purposes of model validation. This was a period of rapidly rising oil prices, increased subsidies in the EU, and, in the US, there was a ban on the major competitor to ethanol for gasoline additives. Our analysis of this historical period permits us to evaluate the relative contribution of each of these factors to the global biofuel boom. We also use this historical simulation to establish a 2006 benchmark biofuel economy from which we conduct our analysis of future mandates. Our prospective analysis of the impacts of the biofuels boom on commodity markets focuses on the 2006-2015 time period, during which existing investments and new mandates in the US and EU are expected to substantially increase the share of agricultural products (e.g., corn in the US, oilseeds in the EU, and sugar in Brazil) utilized by the biofuels sector. In the US, this share could more than double from 2006 levels, while the share of oilseeds going to biodiesel in the EU could triple. Having established the baseline 2006-2015 scenario, we proceed to explore the interactions between the US and EU policies. This involves decomposing the contributions of each set of regional policies to the global changes in output and land use. The most dramatic interaction between the two sets of policies is for oilseed production in the US, where the sign of the output change is reversed in the presence of EU mandates (rising rather than falling). In other sectors, the interaction is more modest. However, when it comes to the impacts of these combined mandates on third economies, the two policies combine to have a much greater impact than just the US or just the EU policies alone.Resource /Energy Economics and Policy,

    Preliminary catalog of pictures taken on the lunar surface during the Apollo 16 mission

    Get PDF
    A catalog of all pictures taken from the lunar module or the lunar surface during the Apollo 16 lunar stay is presented. The tabulations are arranged for the following specific uses: (1) given the number of a particular frame, find its location in the sequence of lunar surface activity, the station from which it was taken and the subject matter of the picture; (2) given a particular location or activity within the sequence of lunar surface activity, find the pictures taken at that time and their subject matter; and (3) given a sample number from the voice transcript listed, find the designation assigned to the same sample by the lunar receiving laboratory

    Biofuels and their By-Products: Global Economic and Environmental Implications

    Get PDF
    The biofuel industry has been rapidly growing around the world in recent years. Several papers have used general equilibrium models and addressed the economy-wide and environmental consequences of producing biofuels at a large scale. They mainly argue that since biofuels are mostly produced from agricultural sources, their effects are largely felt in agricultural markets with major land use and environmental consequences. In this paper, we argue that virtually all of these studies have overstated the impact of liquid biofuels on agricultural markets due to the fact that they have ignored the role of by-products resulting from the production of biofuels. Feed by-products of the biofuel industry, such as Dried Distillers Grains with Solubles (DDGS) and biodiesel by-products (BDBP) such as soy and rapeseed meals, can be used in the livestock industry as substitutes for grains and oilseed meals used in this industry. Hence, their presence mitigates the price impacts of biofuel production on the livestock and food industries. The importance of incorporating by-products of biofuel production in economic models is well recognized by some partial equilibrium analyses of biofuel production. However, to date, this issue has not been tackled by those conducting CGE analysis of biofuels programs. Accordingly, this paper explicitly introduces DDGS and BDBP, the major by-products of grain based ethanol and biodiesel production processes, into a worldwide CGE model and analyzes the economic and environmental impacts of regional and international mandate policies designed to stimulate bioenergy production and use. We first explicitly introduce by-products of biofuel production into the GTAP-BIO database, originally developed by Taheripour et al. (2007). Then we explicitly bring in DDGS and BDBP into the Energy-Environmental version of the Global Trade Analysis Project (GTAP-E) model, originally developed by Burniaux and Truong (2002), and recently modified by McDougall and Golub (2007) and Birur, Hertel, and Tyner (2008). The structure of the GTAP-E model is redesigned to handle the production and consumption of biofuels and their by-products, in particular DDGS, across the world. Unlike many CGE models which are characterized by single product sectors, here grain based ethanol and DDGS jointly are produced by an industry, named EthanolC. The biodiesel industry also produces two products of biodiesel and BDBP jointly. This paper divides the world economy into 22 commodities, 20 industries, and 18 regions and then examines global impacts of the US Energy Independence and Security Act of 2007 and the European Union mandates for promoting biofuel production in the presence of by-products. We show that models with and without by-products demonstrate different portraits from the economic impacts of international biofuel mandates for the world economy in 2015. While both models demonstrate significant changes in the agricultural production pattern across the world, the model with by-products shows smaller changes in the production of cereal grains and larger changes for oilseeds products in the US and EU, and the reverse for Brazil. For example, the US production of cereal grains increases by 10.8% and 16.4% with and without by-products, respectively. The difference between these two numbers corresponds to 646 million bushels of corn. In the presence of by-products, prices change less due to the mandate policies. For example, the model with no by-products predicts that the price of cereal grains grows 22.7% in the US during the time period of 2006 to 2015. The corresponding number for the model with by-products is 14%. The model with no by-products predicts that the price of oilseeds increases by 62.5% in the EU during 2006-2015. In the presence of by-products, this price grows 56.4%. Finally, we show that incorporating DDGS into the model significantly changes the land use consequences of the biofuel mandate polices.Resource /Energy Economics and Policy, Environmental Economics and Policy,

    Preliminary catalog of pictures taken on the lunar surface during the Apollo 15 mission

    Get PDF
    Catalog of all pictures taken from lunar module or lunar surface during Apollo 15 missio

    Immune cell proportions correlate with clinicogenomic features and ex vivo drug responses in acute myeloid leukemia

    Get PDF
    IntroductionThe implementation of small-molecule and immunotherapies in acute myeloid leukemia (AML) has been challenging due to genetic and epigenetic variability amongst patients. There are many potential mechanisms by which immune cells could influence small-molecule or immunotherapy responses, yet, this area remains understudied.MethodsHere we performed cell type enrichment analysis from over 560 AML patient bone marrow and peripheral blood samples from the Beat AML dataset to describe the functional immune landscape of AML.ResultsWe identify multiple cell types that significantly correlate with AML clinical and genetic features, and we also observe significant correlations of immune cell proportions with ex vivo small-molecule and immunotherapy responses. Additionally, we generated a signature of terminally exhausted T cells (Tex) and identified AML with high monocytic proportions as strongly correlating with increased proportions of these immunosuppressive T cells.DiscussionOur work, which is accessible through a new “Cell Type” module in our visualization platform (Vizome; http://vizome.org/), can be leveraged to investigate potential contributions of different immune cells on many facets of the biology of AML

    Solving Global Optimization Problems Using MANGO

    Get PDF
    Traditional approaches for solving global optimization problems generally rely on a single algorithm. The algorithm may be hybrid or applied in parallel. Contrary to traditional approaches, this paper proposes to form teams of algorithms to tackle global optimization problems. Each algorithm is embodied and ran by a software agent. Agents exist in a multiagent system and communicate over Our proposed MultiAgent ENvironment for Global Optimization (MANGO). Through Communication and cooperation, the agents complement each other in tasks that they cannot do on their own. This paper gives a formal description of MANGO and Outlines design principles for developing agents to execute Oil MANGO. Our case study shows the effectiveness of multiagent teams in solving global optimization problems

    Metabolic reprogramming ensures cancer cell survival despite oncogenic signaling blockade

    Get PDF
    There is limited knowledge about the metabolic reprogramming induced by cancer therapies, and how this contributes to therapeutic resistance. Here we show that although inhibition of PI3K-AKT-mTOR signaling markedly decreased glycolysis and restrained tumor growth, these signaling and metabolic restrictions triggered autophagy, which supplied the metabolites required for the maintenance of mitochondrial respiration and redox homeostasis. Specifically, we found that survival of cancer cells was critically dependent on phospholipase A2 (PLA2) to mobilize lysophospholipids and free fatty acids to sustain fatty acid oxidation and oxidative phosphorylation. Consistent with this, we observed significantly increased lipid droplets, with subsequent mobilization to mitochondria. These changes were abrogated in cells deficient for the essential autophagy gene, ATG5. Accordingly, inhibition of PLA2 significantly decreased lipid droplets, decreased oxidative phosphorylation and increased apoptosis. Together, these results describe how treatment-induced autophagy provides nutrients for cancer cell survival and identifies novel co-treatment strategies to override this survival advantage

    UNC2025, a MERTK Small-Molecule Inhibitor, Is Therapeutically Effective Alone and in Combination with Methotrexate in Leukemia Models

    Get PDF
    MERTK tyrosine kinase is ectopically expressed in 30–50% of acute lymphoblastic leukemias (ALL) and over 80% of acute myeloid leukemias (AML) and is a potential therapeutic target. Here, we evaluated the utility of UNC2025, a MERTK tyrosine kinase inhibitor, for treatment of acute leukemia
    corecore