
Solving Global Optimization Problems using MANGO⋆

Akın Günay1, FigenÖztoprak2, Ş. İlker Birbil2, and Pınar Yolum1

1 Boğaziçi University,̇Istanbul, Turkey
akin.gunay@boun.edu.tr, pinar.yolum@boun.edu.tr

2 Sabancı University,̇Istanbul, Turkey,
figen@su.sabanciuniv.edu, sibirbil@sabanciuniv.edu

Abstract. Traditional approaches for solving global optimization problems gen-
erally rely on a single algorithm. The algorithm may be hybrid or applied in
parallel. Contrary to traditional approaches, this paper proposes to form teams
of algorithms to tackle global optimization problems. Eachalgorithm is embod-
ied and ran by a software agent. Agents exist in a multiagent system and com-
municate over our proposed MultiAgent ENvironment for Global Optimization
(MANGO). Through communication and cooperation, the agents complement
each other in tasks that they cannot do on their own. This paper gives a formal
description of MANGO and outlines design principles for developing agents to
execute on MANGO. Our case study shows the effectiveness of multiagent teams
in solving global optimization problems.

1 Introduction

Many powerful algorithms for solving global optimization problems exist [?]. Some
of the algorithms propose a single, unique technique to solve a problem, while others
propose manually-integrated, hybrid approaches. In both cases, algorithms can be run
independently or in parallel. Many such approaches have their own advantages over
others. Depending on context, one algorithm can defeat others in finding a solution.
One intuitive perspective is to enable these algorithms to exist in teams so that they can
complement each other in tasks they cannot do well on their own. Depending on the
context, one algorithm can help the other algorithm (e.g., if one gets stuck in a local
optimum) to continue operations successfully [3–5].

(Software) Agents are autonomous computations that can perceive their environ-
ment, reason, and act accordingly [1]. Agents are most useful when they exist in a mul-
tiagent system so that they can interoperate with other agents. Interoperation requires
agents to speak a common language to coordinate their activities and to cooperate if
they see fit. Autonomy of the agents implies that agent can choose how and with whom
they want to interact. These properties of multiagent system make it an ideal candidate
to realize teams of algorithms. While multiagent systems have been used in many areas,
their use in solving global optimization problems, as we discuss here, is new.

⋆ This research has been partially supported by the Scientificand Technological Research Coun-
cil of Turkey by a CAREER Award under grant 106M472. A preliminary version of this paper
appeared at AAMAS OPTMAS Workshop 2008.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/11741285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Our proposed software environment is MANGO, which providesthe necessary util-
ities to develop agents that can participate in a multiagentsystem to solve global op-
timization problems. MANGO enables agents to find each otherthrough a directory
system. MANGO contains an extendible protocol for agents tocommunicate with each
other. The protocol messages are related to solving problems, such as exchanging cur-
rent best points, signaling areas already explored by others, and so on. Hence, agents
can find others and cooperate with them on their own. As a result, agent teams are
formed and exploited to solve global optimization problems.

There are three main contributions of this paper: (i) We summarize MANGO, our
proposed environment for developing multiagent systems that solve global optimization
problems cooperatively. (ii) We provide design principlesfor developing an agent that
can participate in a multiagent environment for solving global optimization problems.
(iii) We develop a case study in which agents are developed following the above design
principles and show how they can actually solve a given global optimization problem.

The rest of this paper is organized as follows: Section 2 explains MANGO in de-
tail, concentrating on the architecture, services, and messaging. Section 3 identifies the
design principles for developing a MANGO agent. Section 4 develops a case study to
show how MANGO agents can cooperate to solve global optimization problems. Fi-
nally, Section 5 gives our conclusions and future research ideas.

2 MANGO Framework

MANGO is a multiagent global optimization framework. It is implemented in Java and
uses Java Messaging Service (JMS) technology. The aim of MANGO is to provide a
development and experiment environment for global optimization research. Because
of this, contrary to conventional multiagent development environments, the agents that
can be developed using MANGO are targeted for solving globaloptimization problems.
Concepts that are crucial for global optimization such as problem definitions, problem
solutions, and so on are first class entities in MANGO. In the rest of this section we
explain the MANGO environment and working principles of itscomponents in detail.

2.1 Architecture Overview

We present the architecture of the MANGO environment in Figure 1. The fundamental
entity of the MANGO architecture is the agent. Every task, such as solving global op-
timization problems, visualization of results and administrative tasks in the MANGO
environment is performed by agents.

An agent is implemented as a regular Java executable that uses MANGO API in or-
der to work in the MANGO environment. Agents communicate through JMS, however
MANGO API hides details of the JMS communication by providing its own commu-
nication methods in order to simplify development process.MANGO uses the service
concept of the service oriented architecture (SOA) [1]. In this manner agents may pro-
vide services to other agents. For instance, in a typical MANGO environment one agent
may provide a service to solve global optimization problemsusing a specific algorithm
whereas another agent might provide a visualization service to graphically represent



the results of the optimization algorithm. A third agent might use these two services
in combination to solve its global optimization problem andto visualize the results.
MANGO environment itself provides a directory agent for management and service
discovery purposes.

Fig. 1. MANGO Architecture

2.2 Directory Service

In MANGO environment a directory agent is a special agent with administrative and
managerial capabilities and each MANGO environment has onedirectory agent. It
keeps track of all other agents and their services. Using this information it also acts
as a service matchmaker and provides service discovery service to other agents in the
environment. It is also responsible for low level managerial tasks such as maintenance
of communication resources.

2.3 MANGO API

The MANGO API is a fully extendible API that provides all necessary facilities for
the developers to implement their own agents for the MANGO environment. Figure 2
shows the basic components of the MANGO API. There are four main libraries of
classes as theagent templates, protocol, optimization and service. Agent templates li-
brary provides a set of basic agents with communication capabilities. Developers can
implement their own agents through extending these agent templates without consider-
ing details such as messaging. Classes in the protocol library are the predefined set of
protocols and related messages for agent communication. These protocols are further
divided into two libraries as system and optimization protocol libraries. System proto-
cols are mainly used by the agents to communicate with the directory agent for resource
management and service discovery purposes. On the other hand optimization protocols



are used between the agents to solve these problems in cooperation. Classes under the
optimization library provide facilities for global optimization. These include common
problem and solution definitions that allow interchange of global optimization problem
knowledge between agents and utility classes used in these solution and problem defi-
nitions. The classes in service library provide support to define agent services, both for
administration and optimization.

Fig. 2. MANGO API

2.4 Protocols and Messages

MANGO environment provides a set of extendable protocols tocoordinate commu-
nication between agents. Each protocol specifies a set of message types as classes to
specify the content to be exchanged by the agents during the execution of the proto-
col. We divide the protocols into two categories as system and optimization protocols.
System protocols are mainly used between individual agentsand the MANGO environ-
ment. Some examples of system protocols are agent-register-protocol executed when a
new agent joins to the environment, service-register-protocol executed when an agent
starts to provide a new service, and service-discovery-protocol executed when an agent
searches for a new service. On the other hand optimization related protocols provide
simple message exchange blocks that can be combined in orderto realize complex
high-level cooperative optimization strategies explained in Section 4. Some examples
of optimization protocols are solution-request protocol executed when an agent requests
the solution of a specific problem from another agent and refrain-request protocol ex-
ecuted when an agent informs another agent not to search a specific region in a given
search space, and explore-request protocol executed when an agent requests another
agent to explore a certain area.

2.5 Agent Lifecycle

The lifecycle of an agent starts by registering itself to thedirectory agent. While regis-
tering the new agent to the MANGO environment, the directoryagent creates necessary
communication facilities for the new agent. After the registration process the new agent
is ready to act in the MANGO environment. In general an agent can act in three different
ways after this point. First, it can use services provided byother agents in the environ-
ment to perform its own tasks. Second, it can provide services to other agents. Third,
it can do both in parallel. When the agent decides to use services from other agents, it
queries the directory agent for the available services. According to the results of this
query it communicates with the agents that provide the required service. On the other



hand, if the agent decides to provide its own service to otheragent, it must register the
service to the directory agent in order to inform other agents about its service. An agent
can use any number of services provided by other agents at anypoint of its lifecycle.
Similarly, an agent can provide any number of services and dothis at any point of its
lifecycle. The lifecycle of an agent ends when the agent unregisters all of its services
and also itself from the directory agent.

3 Developing a MANGO Agent

When a MANGO agent is being designed, there are three decision points that need to
be considered.
Optimization Algorithm: The first point is the agent’s main algorithm for attacking
the global optimization problem. This algorithm may be any known or newly-developed
algorithm for solving a global optimization problem. The agent designer decides on this
algorithm and implements it in the agent.
Outgoing Messages:The second component is related to when and with whom the
agent is going to communicate during its execution. The communication is necessary
for various reasons, but most importantly for coordination. That is, it is beneficial for an
agent to position itself correctly in the environment. Thatis, generally two agents may
not want to be searching the same area since probably if they search two different areas
they may find a solution faster.

– Needed Services: The questions of when and with whom to communicate are strictly
related to the optimization algorithm that the agent is using. If the agent’s own al-
gorithm cannot handle certain tasks, the agent would need others’ services to han-
dle these. For example, if the agent’s optimization algorithm cannot perform local
search well, the agent may find it useful to find other agents that can offer local
search service. As explained before, whether an agent does offer this service can be
found out by querying the directory agent that keeps track ofthe services associated
with each agent. After finding out the agents that offer the service, the agent may
contact one of them to receive the service. Alternatively, an agent that can do local
search well may be interested in finding out new areas to search when it finishes
its local search. Hence, it may be interested in finding others that can suggest new
areas to search.

– Played Roles: An agent may decide to take a leader role in the multiagent system
and influence the others by suggesting areas to explore or refrain from. The choice
of taking this role is up to the agent, but is also affected by the particular algorithm
the agent is executing. That is, some algorithms can identify potential “good” areas
quickly and thus it is reasonable for the agent to take this role and to inform others
about the potential of these areas.

Incoming Messages:The third decision point is related to if and how the agent is going
to handle incoming messages. One naive approach is to alwaysanswer or follow the in-
coming messages. For example, if an agent receives an explore message, it can always
jump to the areas that is being suggested for exploration. Or, whenever it is prompted
for the best solution it has found, it can return its current best solution. However, the



following play an important role in how the incoming messages can be handled intelli-
gently.

– Exploration State: The exploration state corresponds to how well the agent has
explored the environment. This is important in answering questions, since an agent
may prefer not to answer question if it has not explored the environment well or
conversely prefer not to follow orders (such as refrain messages) if it has explored
the environment carefully. For example, in the beginning ofthe execution, when
the agent did not have enough time to search properly, it may decide not to answer
incoming messages related to the best solutions it has found, since its solution may
not be representative.

– Agent Sending the Message: Over the course of exaction, an agent may model other
agents based on the types of messages they are sending. Basedon this model, an
agent may decide how and if it is going to handle a message. Forexample, if an
agent sends frequent explore messages to a second agent, thereceiving agent may
mark the sender agent as a “spammer” and decide to ignore messages coming from
that agent.

4 A Case Study

In this section, we provide an illustrative system that has been established to solve a
global optimization problem with three cooperative agentsin MANGO.
Motivations for the example: The strategies in this example are motivated by two
challenges in global optimization. An important issue thatmakes very well-known ef-
ficient local optimization methods useless for global optimization problems is that the
objective function may have multiple local minima. A local optimization method finds
one of them, which may or may not be the global one, depending on the initial point
from where it has started its search. A first idea to overcome this problem to a certain
degree is starting local search from several initial points. But the obvious drawback
of this straightforward approach is that many searches may end up in the same local
minimum point, i.e., the same local minimum may be rediscovered for several times.

Position of the global minimum is another issue. When the global minimum lies
at the bottom of a large basin, i.e., the attraction region, it is relatively easier to find it
out since an initial point is near to that large attraction region with a higher probability.
A situation at least as hard as a narrow attraction region is anarrow attraction region
placed within the attraction region of another local minimum. In this case, there is a
significant risk of ending up at the more attractive local minimum point even when we
start very close to the global minimum. If we escape from the larger attraction region
not to rediscover it, then we may never approach to the globalminimum and waste our
efforts in irrelevant faraway parts of the search space.
The problem: We select a two-dimensional problem for our illustration. The problem
is produced by the GKLS generator [2]. It has 20 local minima and finding the global
minimum is quite hard in the sense that it has a relatively small attraction region and it
is located within the attraction region of another local minimum (see Figure 3).
The agents:The three agents we run in this example are all local optimization agents
[?]. We name the three agents asBFGS, TR, andPTR. The BFGSAgent applies BFGS



−5 0 5−505

−20

0

20

40

60

80

100

120

140

160

(a) Mesh plot of the objective function

−4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

5

(b) Contours of the objective function

Fig. 3.The problem

quasi-Newton algorithm: a line search method which progresses by taking steps through
directions that provide decrease in the objective functionvalue, so it calculates a direc-
tion vector and a step size at each iteration. TRAgent applies a trust region method. It
generates a model function which is a quadratic approximation to the original objective
function. It accepts that the model function is a good approximation within atrust re-
gion, a∆-radius ball, and it minimizes the model function in that region. It updates the
model function and the trust region radius at each iteration. Finally, PTRAgent applies
a perturbed trust region method: It applies a trust region algorithm like TRAgent. But it
works more sensitive, i.e., the maximum radius value allowed is small. Also, it follows
a perturbed direction in some iterations to increase the chance of finding an unvisited
minimum point. That is, the iterates are not moved along the direction as in the regular
trust region method; instead, the trust region direction isdistorted randomly.
Cooperation strategies:The cooperation strategies applied by three agents are illus-
trated in Figure 4. They follow three basic ideas to improve their performance:

– penalize approaching to already discovered local minima (BFGS)
– do not enter regions searched by others (TR)
– conduct a more sensitive search in the region searched by theother agents, so that

a possible global optimum near a local one is not missed (PTR)

In this context, the cooperation procedures applied by eachagent are summarized
as follows:

– BFGSAgent
ListenMessage: If an INFORM SOLUTION message is received, then add the
received pointxr to thepenalized list so that approaching toxr increases the
objective function.
SendMessage: If converged to a pointxf , starting from a pointx0, then send
the ball with centerxf and radius‖xf − x0‖ to both TRAgent and PTRAgent
as a REFRAINREGION message.



BFGSAgent

PTRAgent

TRAgent

Conduct a detailed

received regions

refrain region

Do not approach to

Do not enter the
received regions

the received points

solution point
search in the

Fig. 4. The cooperation strategies

– TRAgent

ListenMessage: If a REFRAIN REGION message is received, then add the
received region to therefrained list so that if case of entrance to that region
leave the ongoing search and start a new search from some random point in the
solution space.
SendMessage: If converged to a pointxf , then send it to BFGSAgent as an
INFORM SOLUTION message. If the radius of the last trust region is∆f ,
then send the ball with centerxf and radiusk∆f to PTRAgent as a RE-
FRAIN REGION message,k ≥ 1.

−4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

5

2

3

4

5
7

6

1

8

+

+

Fig. 5. The penalizing strategy applied by BFGSAgent



– PTRAgent

ListenMessage If a REFRAIN REGION message is received, then it is added
to theexplore list so that it is going to be searched for a minimum other than
the center of that region.

SendMessage If converged to a pointxf , then send it to BFGSAgent as an
INFORM SOLUTION message.

Observations: We next illustrate how those strategies work on the above mentioned
problem with 20 minima. In Figure 5, the search paths of BFGSAgent has been marked
with ×. The points marked by+ are the minima that have been already discovered by
other agents and sent to BFGSAgent. The consecutive searches conducted by BFGSAgent
are numbered. As the figure points out, the search is discouraged to approach to the pre-
viously converged points, either by BFGSAgent or by the other agents.

In Figure 6, we illustrate the second idea. The search paths of TRAgent are marked
with + signs, the circles are the trust regions. The paths are numbered at their starting
points. During its second run, TRAgent has entered to the refrain region sent by the
BFGSAgent at its forth step. Thus, it has left the second pathat that point and started
a new search from another point so that it has spent its effortfor discovering another
local minimum (at the end of the third path).

−4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

5

3

2

1

Fig. 6. The leaving strategy applied by TRAgent

Finally, in Figure7, we can see the steps of PTRAgent marked by ∗ signs. It has
started a new search in the refrain region sent by BFGSAgent,which has provided
finding the global minimum point.



−4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 7. The research strategy applied by PTRAgent

5 Conclusions

We have introduced a new multi-agent environment for globaloptimization. The pro-
posed environment provides a flexible mechanism that can be used to design new co-
operation strategies among different global optimizationalgorithms. We have demon-
strated on an illustrative example that the design of different cooperation strategies can
significantly enhance the performance of individual algorithms. In the future, we in-
tend to focus on different strategies and demonstrate theirperformances with empirical
results.

References

1. Singh, M.P., Huhns, M.N.: Service-Oriented Computing: Semantics, Processes, Agents.
John Wiley & Sons, Chichester, UK (2005)

2. M. Gaviano, D. E. Kvasov, D.L., Sergeyev, Y.D.: Algorithm829: Software for generation of
classes of test functions with known local and global minimafor global optimization. ACM
Transactions on Mathematical Software29(4) (2003) 469–480

3. Talukdar, S., Baerentzen, L., Gove, A., Souza, P.D.: Asynchronous teams: Cooperation
schemes for autonomous agents. Journal of Heuristics4(4) (1998) 295–321

4. Tyner, K., Westerberg, A.: Multiperiod design of azetropic seperation systems i: An agent
based approach. Computers and Chemical Engineering25 (2001) 1267–1284

5. Siirola, D., S.Hauan, Westerberg, A.: Toward agent-based process systems engineering:
Proposed framework and application to non-convex optimization. Computers and Chemical
Engineering27 (2003) 1801–1811

6. Yokoo, M. ve Ishida, T.: Search algorithms for agents. In G.Weiss, ed.: Multiagent Systems:
A Modern Approach to Distributed Artificial Intelligence. The MIT Press (1990)

7. Modi, P., Shena, W., Tambe, M., Yokoo, M.: Adopt: asynchronous distributed constraint
optimization with quality guarantees. Artificial Intelligence161(2005) 149–180



8. Lau, H.C., Wang, H.: A multi-agent approach for solving optimization problems involving
expensive resources. In: ACM Symposium on Applied Computing. (2005)

9. Ahluwalia, A., Modiano, E.: On the complexity and distributed construction of energy-
efficient broadcast trees in wireless ad-hoc networks. IEEETransactions on Wireless Com-
munications4(5) (2005) 2136–2147

10. Rabbat, M., Nowak, R.: Distributed optimization in sensor networks. In: IPSN’04. (2004)
11. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Pro-

ceedings of European Conference on Artificial Life. (1991) 134–142
12. J. Kennedy, R.: Particle swarm optimization. In: Proceedings of IEEE International Confer-

ence on Neural Networks. Volume 4. (1995) 1942–1948
13. Birbil, S., Fang, S.C.: An electromagnetism-like mechanism for global optimization. Journal

of Global Optimization25(3) (2003) 263–282
14. Tsui, K., Liu, J.: Evolutionary diffusion optimization, part i:description of the algorithm. In:

Proceedings of Congr. Evolutionary Computation (CEC). (2002) 1284–1290


