30 research outputs found

    Acrylates in Dental Applications

    Get PDF
    In the presented chapter, the role that is played by acrylates in dentistry has been characterized. In the introduction, subject of oral diseases has been raised as well as an issue of development of dentistry over the centuries. Furthermore, characteristics of the materials that have been used over the years to receive elements used in the form of prosthetic devices or dental implants that in the most favourable way from the user’s point of view enable the restoration of the missing piece of the dentition have been performed. Next, composition, functions and types of teeth have been described. In the following sections, materials (including dentures, adhesives, impression trays and dental crowns) widely used in dentistry and dental prosthetics in the preparation of which the key role is played by acrylates have been characterized. The preparation of prostheses was described. Particular attention has been drawn on the possibility of modification of the synthesis of acrylic materials that can lead to the improvement of their properties and result in making them more favourable from the point of view of the patient. The chapter is crowned with a brief description of the studies of properties, which are subjected to dental materials before application in the dental office

    Physicochemical Investigations of Hydrogels Containing Gold Nanoparticles Designed for Biomedical Use

    Get PDF
    Currently, many investigations are being performed to develop dressing materials with a positive effect on the wound healingprocess. In general, innovative dressings should ensure wound exudate absorption, constitute an external barrier limiting thepossibility of wound contamination and, importantly, also provide therapeutic properties. This work is focused on obtainingmaterials with potential use as dressings for treatment of difficult-to-heal wounds. The synthesis methodology of acrylic hydrogelsmodified with selected modifiers, i.e. arabic gum, nanogold, bee pollen and chamomile extract, was developed. Next, thesorption properties of the materials were determined as well as their behavior during the incubation in fluids imitating theenvironment of the human body. Additionally, the impact of such an incubation on their structure was evaluated by FT-IR spectroscopy.It was proved that the modifiers affected the sorption properties of hydrogels, i.e. samples with additives showed evenapprox. 2.5-fold lower swelling ability. In turn, incubation of hydrogels in simulated body fluids did not cause any rapid changesin pH, which may indicate the biocompatibility of the tested materials with the tested fluids. Thus, it may be concluded that thedeveloped materials show great application potential for biomedical purposes and may be subjected to more advanced studiessuch as cytotoxicity assessments towards selected cell lines

    Propolis – beekeeping medicinal product

    Get PDF
    The paper presents the healing properties and biological activity of propolis, commonly known as bee glue. Propolis is a natural product collected by bees from buds of plants and bark of trees, then moistened with bee enzymes. Propolis is widely used for general treatment, skin affections, and as an anti-inflammatory agent for ulcers and hard-to-heal wounds. Propolis, due to its properties, is called an antibiotic of the 21st century

    Impact of N-alkylamino substituents on serotonin receptor (5-HTR) affinity and phosphodiesterase 10A (PDE10A) inhibition of isoindole-1,3-dione derivatives

    Get PDF
    In this study, a series of compounds derived from 4-methoxy-1H-isoindole-1,3(2H)-dione, potential ligands of phosphodiesterase 10A and serotonin receptors, were investigated as potential antipsychotics. A library of 4-methoxy-1H-isoindole-1,3(2H)-dione derivatives with various amine moieties was synthesized and examined for their phosphodiesterase 10A (PDE10A)-inhibiting properties and their 5-HT1A and 5-HT7 receptor affinities. Based on in vitro studies, the most potent compound, 18 (2-[4-(1H-benzimidazol-2-yl)butyl]-4-methoxy-1H-isoindole-1,3(2H)-dione), was selected and its safety in vitro was evaluated. In order to explain the binding mode of compound 18 in the active site of the PDE10A enzyme and describe the molecular interactions responsible for its inhibition, computer-aided docking studies were performed. The potential antipsychotic properties of compound 18 in a behavioral model of schizophrenia were also investigated

    Composites Based on Hydroxyapatite and Whey Protein Isolate for Applications in Bone Regeneration

    Get PDF
    The “Multifunctional biologically active composites for applications in bone regenerative medicine” project is carried out within the TEAM-NET program of the Foundation for Polish Science financed by the European Union under the European Regional Development Fund. The authors gratefully acknowledge the financial support. T.E.L.D. thanks N8 Agrifood for its financial support in the framework of the pump priming grant “Food2Bone”.Hydroxyapatite (HAp) is a bioactive ceramic with great potential for the regeneration of the skeletal system. However, its mechanical properties, especially its brittleness, limit its application. Therefore, in order to increase its ability to transmit stresses, it can be combined with a polymer phase, which increases its strength without eliminating the important aspect of bioactivity. The presented work focuses on obtaining organic–inorganic hydrogel materials based on whey protein isolate (WPI) reinforced with nano-HAp powder. The proportion of the ceramic phase was in the range of 0–15%. Firstly, a physicochemical analysis of the materials was performed using XRD, FT-IR and SEM. The hydrogel composites were subjected to swelling capacity measurements, potentiometric and conductivity analysis, and in vitro tests in four liquids: distilled water, Ringer’s fluid, artificial saliva, and simulated body fluid (SBF). The incubation results demonstrated the successful formation of new layers of apatite as a result of the interaction with the fluids. Additionally, the influence of the materials on the metabolic activity according to ISO 10993-5:2009 was evaluated by identifying direct contact cytotoxicity towards L-929 mouse fibroblasts, which served as a reference. Moreover, the stimulation of monocytes by hydrogels via the induction of nuclear factor (NF)-κB was investigated. The WPI/HAp composite hydrogels presented in this study therefore show great potential for use as novel bone substitutes

    Comparison of Hydrogels Based on Commercial Chitosan and Beetosan® Containing Nanosilver

    No full text
    Two series of hydrogels on the basis of commercial chitosan and chitosan derived from naturally expired honeybees are presented in this article. Sorption capacity and behavior of both kind of materials in simulated body fluids such as Ringer’s liquid or artificial saliva have been determined and compared. Presence of functional groups in synthesized materials have been determined by means of FT-IR spectroscopy. Structure and homogeneity of their surface have been defined using Scanning Electron Microscopy. Based on the conducted research, it can be stated that both chitosan and Beetosan® hydrogels have very similar characteristics. It is worth noting that synthesis of such materials is environmentally friendly and leads to obtaining polymers that can be used for biomedical applications. Tested materials are characterized by low sorption capacity and do not have a negative impact on simulated body fluids. Moreover, based on the cell lines studies, it can be stated that Beetosan® hydrogels have a negative influence on cells of cancerous origin and, what is important, significantly less adverse effects on fibroblasts

    Comparison of Hydrogels Based on Commercial Chitosan and Beetosan® Containing Nanosilver

    No full text
    Two series of hydrogels on the basis of commercial chitosan and chitosan derived from naturally expired honeybees are presented in this article. Sorption capacity and behavior of both kind of materials in simulated body fluids such as Ringer’s liquid or artificial saliva have been determined and compared. Presence of functional groups in synthesized materials have been determined by means of FT-IR spectroscopy. Structure and homogeneity of their surface have been defined using Scanning Electron Microscopy. Based on the conducted research, it can be stated that both chitosan and Beetosan® hydrogels have very similar characteristics. It is worth noting that synthesis of such materials is environmentally friendly and leads to obtaining polymers that can be used for biomedical applications. Tested materials are characterized by low sorption capacity and do not have a negative impact on simulated body fluids. Moreover, based on the cell lines studies, it can be stated that Beetosan® hydrogels have a negative influence on cells of cancerous origin and, what is important, significantly less adverse effects on fibroblasts

    Novel Hydrogels Modified with Xanthan Gum – Synthesis and Characterization

    No full text
    Due to their interesting features, hydrogels are attracting growing interest in the polymer materials market. Therefore, many studies are currently conducted to characterize these materials and to modify them in order to increase the range of their potential use. In the presented article, hydrogels based on acrylic acid and chitosan and modified with xanthan gum were obtained by photopolymerization. Their swelling ability and behaviour in solutions that simulate fluids in the human body were determined. The effect of incubation in various fluids on the chemical structure of the synthesized materials was characterized using spectroscopic analysis. Furthermore, the surface morphology of the attained materials was characterized with scanning electron microscopy (SEM)
    corecore