128 research outputs found

    Deciphering Drought Response Mechanisms: Transcriptomic Insights from Drought-Tolerant and Drought-Sensitive Wheat (Triticum aestivum L.) Cultivars

    Get PDF
    Drought stress poses a significant threat to wheat (Triticum aestivum L.) cultivation, necessitating an in-depth understanding of the molecular mechanisms underpinning drought response in both tolerant and sensitive varieties. In this study, 12 diverse bread wheat cultivars were evaluated for their drought stress responses, with particular emphasis on the contrasting performance of cultivars Atay 85 (sensitive), Gerek 79, and Mufitbey (tolerant). Transcriptomic analysis was performed on the root and leaf tissues of the aforementioned cultivars subjected to 4-hour and 8-hour drought stress and compared with controls. Differentially expressed genes (DEGs) were categorized based on their cellular component, molecular function, and biological function. Notably, there was greater gene expression variability in leaf tissues compared to root tissues. A noticeable trend of decreased gene expression was observed for cellular processes such as protein refolding and cellular metabolic processes like photorespiration as drought stress duration increased (8 hours) in the leaf tissues of drought-tolerant and sensitive cultivars. Metabolic processes related to gene expression were predominantly activated in response to 4-hour and 8-hour drought stress. The drought-tolerant cultivars exhibited increased expression levels of genes related to protein binding, metabolic processes, and cellular functions, indicating their ability to adapt better to drought stress compared to the drought-sensitive cultivar Atay 85. We detected more than 25 differentially expressed TFs in leaf tissues under 4-hour and 8-hour drought stress, while only 4 TFs were identified in the root tissues of sensitive cultivar. In contrast, the tolerant cultivar exhibited more than 80 different TF transcripts in both leaves and roots after 4 hours of drought stress, with this number decreasing to 18 after 8 hours of drought stress. Differentially expressed genes with a focus on metal ion binding, carbohydrate degradation, ABA-related genes, and cell wall-related genes were highlighted. Ferritin (TaFer), TaPME42 and Extensin-like protein (TaExLP), Germin-like protein (TaGLP 9-1), Metacaspase-5 (TaMC5), Arogenate Dehydratase 5 (ADT-5), Phosphoglycerate/ bisphosphoglycerate mutase (TaPGM), Serine/threonine protein phosphatase 2A (TaPP2A), GIGANTEA (TaGI), Polyadenylate-binding protein (TaRBP45B) exhibited differential expression by qRT-PCR in root and leaf tissues of tolerant and sensitive bread wheat cultivars. This study provides valuable insights into the complex molecular mechanisms associated with drought response in wheat, highlighting genes and pathways involved in drought tolerance. Understanding these mechanisms is essential for developing drought-tolerant wheat varieties, enhancing agricultural sustainability, and addressing the challenges posed by water scarcity

    Cooperative Transition between Open and Closed Conformations in Potassium Channels

    Get PDF
    Potassium (K+) ion channels switch between open and closed conformations. The nature of this important transition was revealed by comparing the X-ray crystal structures of the MthK channel from Methanobacterium thermoautotrophicum, obtained in its open conformation, and the KcsA channel from Streptomyces lividans, obtained in its closed conformation. We analyzed the dynamic characteristics and energetics of these homotetrameric structures in order to study the role of the intersubunit cooperativity in this transition. For this, elastic models and in silico alanine-scanning mutagenesis were used, respectively. Reassuringly, the calculations manifested motion from the open (closed) towards the closed (open) conformation. The calculations also revealed a network of dynamically and energetically coupled residues. Interestingly, the network suggests coupling between the selectivity filter and the gate, which are located at the two ends of the channel pore. Coupling between these two regions was not observed in calculations that were conducted with the monomer, which emphasizes the importance of the intersubunit interactions within the tetrameric structure for the cooperative gating behavior of the channel

    A review of the international early recommendations for departments organization and cancer management priorities during the global COVID-19 pandemic: applicability in low- and middle-income countries.

    Get PDF
    Coronavirus disease 2019 (COVID-19) is an infectious disease caused by a new virus that has never been identified in humans before. COVID-19 caused at the time of writing of this article, 2.5 million cases of infections in 193 countries with 165,000 deaths, including two-third in Europe. In this context, Oncology Departments of the affected countries had to adapt quickly their health system care and establish new organizations and priorities. Thus, numerous recommendations and therapeutic options have been reported to optimize therapy delivery to patients with chronic disease and cancer. Obviously, while these cancer care recommendations are immediately applicable in Europe, they may not be applicable in certain emerging and low- and middle-income countries (LMICs). In this review, we aimed to summarize these international guidelines in accordance with cancer types, making a synthesis for daily practice to protect patients, staff and tailor anti-cancer therapy delivery taking into account patients/tumour criteria and tools availability. Thus, we will discuss their applicability in the LMICs with different organizations, limited means and different constraints

    Predicting Important Residues and Interaction Pathways in Proteins Using Gaussian Network Model: Binding and Stability of HLA Proteins

    Get PDF
    A statistical thermodynamics approach is proposed to determine structurally and functionally important residues in native proteins that are involved in energy exchange with a ligand and other residues along an interaction pathway. The structure-function relationships, ligand binding and allosteric activities of ten structures of HLA Class I proteins of the immune system are studied by the Gaussian Network Model. Five of these models are associated with inflammatory rheumatic disease and the remaining five are properly functioning. In the Gaussian Network Model, the protein structures are modeled as an elastic network where the inter-residue interactions are harmonic. Important residues and the interaction pathways in the proteins are identified by focusing on the largest eigenvalue of the residue interaction matrix. Predicted important residues match those known from previous experimental and clinical work. Graph perturbation is used to determine the response of the important residues along the interaction pathway. Differences in response patterns of the two sets of proteins are identified and their relations to disease are discussed

    Description of Even-Even Xe isotopes in the transitional region of IBM

    Full text link
    Properties of Xe isotopes isotopes are studied in the U(5)O(6) transitional region of Interacting Boson Model (IBM-1). The energy levels and B(E2)transition rates are calculated via the affine SU(1,1)Lie Algebra. The agreement with the most recent experimental is acceptable. The evaluated Hamiltonian control parameters suggest a spherical to (/gamma)-soft shape transition and propose the Xe(A=130)nucleus as the best candidate for the E(5)symmetry.Comment: 15 pages,3 figures. I have received an email from the BJPH editor (Prof.Luiz Nunes de Oliveira)which order me to resubmit the final version of paper and note that, paper will appear in Volume 43 of the Brazilian Journal of Physic

    Predictors of enhancing human physical attractiveness: Data from 93 countries

    Get PDF
    People across the world and throughout history have gone to great lengths to enhance their physical appearance. Evolutionary psychologists and ethologists have largely attempted to explain this phenomenon via mating preferences and strategies. Here, we test one of the most popular evolutionary hypotheses for beauty-enhancing behaviors, drawn from mating market and parasite stress perspectives, in a large cross-cultural sample. We also test hypotheses drawn from other influential and non-mutually exclusive theoretical frameworks, from biosocial role theory to a cultural media perspective. Survey data from 93,158 human participants across 93 countries provide evidence that behaviors such as applying makeup or using other cosmetics, hair grooming, clothing style, caring for body hygiene, and exercising or following a specific diet for the specific purpose of improving ones physical attractiveness, are universal. Indeed, 99% of participants reported spending >10 min a day performing beauty-enhancing behaviors. The results largely support evolutionary hypotheses: more time was spent enhancing beauty by women (almost 4 h a day, on average) than by men (3.6 h a day), by the youngest participants (and contrary to predictions, also the oldest), by those with a relatively more severe history of infectious diseases, and by participants currently dating compared to those in established relationships. The strongest predictor of attractiveness-enhancing behaviors was social media usage. Other predictors, in order of effect size, included adhering to traditional gender roles, residing in countries with less gender equality, considering oneself as highly attractive or, conversely, highly unattractive, TV watching time, higher socioeconomic status, right-wing political beliefs, a lower level of education, and personal individualistic attitudes. This study provides novel insight into universal beauty-enhancing behaviors by unifying evolutionary theory with several other complementary perspectives
    corecore