39 research outputs found

    Modeling of Electro-deposition and Mechanical Stability at Li Metal/Solid Electrolyte Interface during Plating in Solid-State Batteries

    Full text link
    Interfacial deposition stability between Li metal and a solid electrolyte (SE) is important in preventing interfacial contact loss, mechanical fracture, and dendrite growth in Li-metal solid-state batteries (SSB). In this work, we investigate the deposition and mechanical stability at the Li metal/SE interface and its consequences (such as SE fracture and contact loss). A wide range of contributing factors are investigated, such as charge and mass transfer kinetics, the plasticity of Li metal and fracture of the SE, and the applied stack pressure. We quantify the effect of the ionic conductivity of the SE, the exchange current density of the interfacial charge-transfer reaction and SE surface roughness on the Li deposition stability at the Li metal/SE interface. We also propose a mechanical stability window for the applied stack pressure that can prevent both contact loss and SE fracture, which can be extended to other metal-electrode (such as Sodium) SSB systems.Comment: 38 pages, 7 figure

    A probabilistic deep learning approach to automate the interpretation of multi-phase diffraction spectra

    Full text link
    Autonomous synthesis and characterization of inorganic materials requires the automatic and accurate analysis of X-ray diffraction spectra. For this task, we designed a probabilistic deep learning algorithm to identify complex multi-phase mixtures. At the core of this algorithm lies an ensemble convolutional neural network trained on simulated diffraction spectra, which are systematically augmented with physics-informed perturbations to account for artifacts that can arise during experimental sample preparation and synthesis. Larger perturbations associated with off-stoichiometry are also captured by supplementing the training set with hypothetical solid solutions. Spectra containing mixtures of materials are analyzed with a newly developed branching algorithm that utilizes the probabilistic nature of the neural network to explore suspected mixtures and identify the set of phases that maximize confidence in the prediction. Our model is benchmarked on simulated and experimentally measured diffraction spectra, showing exceptional performance with accuracies exceeding those given by previously reported methods based on profile matching and deep learning. We envision that the algorithm presented here may be integrated in experimental workflows to facilitate the high-throughput and autonomous discovery of inorganic materials

    A Molecular Dynamics Study on Rotational Nanofluid and Its Application to Desalination

    No full text
    In this work, we systematically study a rotational nanofluidic device for reverse osmosis (RO) desalination by using large scale molecular dynamics modeling and simulation. Moreover, we have compared Molecular Dynamics simulation with fluid mechanics modeling. We have found that the pressure generated by the centrifugal motion of nanofluids can counterbalance the osmosis pressure developed from the concentration gradient, and hence provide a driving force to filtrate fresh water from salt water. Molecular Dynamics modeling of two different types of designs are performed and compared. Results indicate that this novel nanofluidic device is not only able to alleviate the fouling problem significantly, but it is also capable of maintaining high membrane permeability and energy efficiency. The angular velocity of the nanofluids within the device is investigated, and the critical angular velocity needed for the fluids to overcome the osmotic pressure is derived. Meanwhile, a maximal angular velocity value is also identified to avoid Taylor-Couette instability. The MD simulation results agree well with continuum modeling results obtained from fluid hydrodynamics theory, which provides a theoretical foundation for scaling up the proposed rotational osmosis device. Successful fabrication of such rotational RO membrane centrifuge may potentially revolutionize the membrane desalination technology by providing a fundamental solution to the water resource problem

    A Molecular Dynamics Study of Crosslinked Phthalonitrile Polymers: The Effect of Crosslink Density on Thermomechanical and Dielectric Properties

    No full text
    In this work, molecular dynamics (MD) and molecular mechanics (MM) simulations are used to study well-equilibrated models of 4,4′-bis(3,4-dicyanophenoxy)biphenyl (BPh)–1,3-bis(3-aminophenoxy)benzene (m-APB) phthalonitrile (PN) system with a range of crosslink densities. A cross-linking technique is introduced to build a series of systems with different crosslink densities; several key properties of this material, including thermal expansion, mechanical properties and dielectric properties are studied and compared with experimental results. It is found that the coefficient of linear thermal expansion predicted by the model is in good agreement with experimental results and indicative of the good thermal stability of the PN polymeric system. The simulation also shows that this polymer has excellent mechanical property, whose strength increases with increasing crosslink density. Lastly and most importantly, the calculated dielectric constant—which shows that this polymer is an excellent insulating material—indicates that there is an inverse relation between cross-linking density and dielectric constant. The trend gave rise to an empirical quadratic function which can be used to predict the limits of attainable dielectric constant for highly crosslinked polymer systems. The current computational work provides strong evidence that this polymer is a promising material for aerospace applications and offers guidance for experimental studies of the effect of cross-linking density on the thermal, mechanical and dielectric properties of the material
    corecore