470 research outputs found

    Host-Targeting Antivirals for Treatment of Hepatitis C

    Get PDF
    Treatment of chronic hepatitis C virus (HCV) infection has been revolutionized during last years with the development of highly potent direct-acting antivirals (DAAs) specifically targeting HCV proteins. DAAs are the current standard of care for patients with chronic hepatitis C, leading to high cure rates. However, some hurdles exist including the high cost of these therapies restricting access to patients, their inability to protect against the risk of developing hepatocellular carcinoma in patients with advanced fibrosis, and emergence of resistant variants resulting in treatment failure. New therapeutic options should be essential to overcome DAAs limitations and improve survival. By targeting host-cell factors involved in HCV life cycle, host-targeting antivirals (HTAs) offer opportunity for promising anti-HCV therapy with low mutational rate and may act in a synergistic manner with DAAs to prevent viral resistance and reduce viral replication. Moreover, HTAs could be effective in difficult-to-cure patients by acting through complementary mechanisms. In this chapter, we will focus on the latest and most relevant studies regarding the host-cell factors required in HCV infection and explored as targets of antiviral therapy, we will also discuss the HTAs evaluated in preclinical and clinical development and their potential role as alternative or complementary therapeutic strategies

    Hepatitis C Virus-Related Lymphomagenesis in a Mouse Model

    Get PDF
    B cell non-Hodgkin lymphoma is a typical extrahepatic manifestation frequently associated with hepatitis C virus (HCV) infection. The mechanism by which HCV infection leads to lymphoproliferative disorder remains unclear. Our group established HCV transgenic mice that expressed the full HCV genome in B cells (RzCD19Cre mice). We observed a 25.0% incidence of diffuse large B cell non-Hodgkin lymphomas (22.2% in male and 29.6% in female mice) within 600 days of birth. Interestingly, RzCD19Cre mice with substantially elevated serum-soluble interleukin-2 receptor α-subunit (sIL-2Rα) levels (>1000 pg/mL) developed B cell lymphomas. Another mouse model of lymphoproliferative disorder was established by persistent expression of HCV structural proteins through disruption of interferon regulatory factor-1 (irf-1_/_/CN2 mice). Irf-1_/_/CN2 mice showed extremely high incidences of lymphomas and lymphoproliferative disorders. Moreover, these mice showed increased levels of interleukin (IL)-2, IL-10, and Bcl-2 as well as increased Bcl-2 expression, which promoted oncogenic transformation of lymphocytes

    Property of hepatitis B virus replication in Tupaia belangeri hepatocytes

    Get PDF
    AbstractThe northern treeshrew (Tupaia belangeri) has been reported to be an effective candidate for animal infection model with hepatitis B virus (HBV). The objective of our study was to analyze the growth characteristics of HBV in tupaia hepatocytes and the host response to HBV infection. We established primary tupaia hepatocytes (3–6-week old tupaia) and infected them with HBV genotypes A, B and C, and all the genotypes proliferated as well as those in human primary hepatocytes (>105 copies/ml in culture supernatant). We next generated a chimeric mouse with tupaia liver by transplantation of tupaia primary hepatocytes to urokinase-type plasminogen activator cDNA (cDNA-uPA)/severe combined immunodeficient (SCID) mice and the replacement ratio with tupaia hepatocytes was found to be more than 95%. Infection of chimeric mice with HBV (genotypes B, C, and D) resulted in HBV-DNA level of 104-106 copies/ml after 8 weeks of infection, which were almost similar to that in humanized chimeric mouse. In contrast, serum HBV level in adult tupaia (1-year-old tupaia) was quite low (<103 copies/ml). Understanding the differences in the response to HBV infection in primary tupaia hepatocytes, chimeric mouse, and adult tupaia will contribute to elucidating the mechanism of persistent HBV infection and viral eradication. Thus, T. belangeri was found to be efficient for studying the host response to HBV infection, thereby providing novel insight into the pathogenesis of HBV

    Selective Translation of the Measles Virus Nucleocapsid mRNA by La Protein

    Get PDF
    Measles, caused by measles virus (MeV) infection, is the leading cause of death in children because of secondary infections attributable to MeV-induced immune suppression. Recently, we have shown that wild-type MeVs induce the suppression of protein synthesis in host cells (referred to as “shutoff”) and that viral mRNAs are preferentially translated under shutoff conditions in infected cells. To determine the mechanism behind the preferential translation of viral mRNA, we focused on the 5′ untranslated region (UTR) of nucleocapsid (N) mRNA. The La/SSB autoantigen (La) was found to specifically bind to an N-5′UTR probe. Recombinant La enhanced the translation of luciferase mRNA containing the N-5′UTR (N-fLuc), and RNA interference of La suppressed N-fLuc translation. Furthermore, recombinant MeV lacking the La-binding motif in the N-5′UTR displayed delayed viral protein synthesis and growth kinetics at an early phase of infection. These results suggest that La induced predominant translation of N mRNA via binding to its 5′UTR under shutoff conditions. This is the first report on a cellular factor that specifically regulates paramyxovirus mRNA translation

    Foot-and-mouth disease virus genome replication is unaffected by inhibition of type III phosphatidylinositol-4-kinases

    Get PDF
    Foot-and-mouth disease virus (FMDV) causes economically-damaging infections of cloven-hooved animals, with outbreaks resulting in large financial losses to the agricultural industry. Due to the highly contagious nature of FMDV, research with infectious virus is restricted to a limited number of key facilities worldwide. FMDV subgenomic replicons are therefore important tools for the study of viral translation and genome replication. The type III phosphatidylinositol-4-kinases (PI4K) are a family of enzymes that play a key role in the production of replication complexes (viral factories) of a number of positive-sense RNA viruses and represents a potential target for novel pan-viral therapeutics. Here, we have investigated whether type III PI4Ks also play a role in the FMDV lifecycle, using a combination of FMDV subgenomic replicons and bicistronic IRES-containing reporter plasmids. We have demonstrated that replication of the FMDV replicon was unaffected by inhibitors of either PI4KIIIα or PI4KIIIβ. However, PIK93, an inhibitor previously demonstrated to target PI4KIIIβ, did inhibit IRES-mediated protein translation. Consistent with this, cells transfected with FMDV replicons did not exhibit elevated levels of PI4P lipids. These results are therefore supportive of the hypothesis that FMDV genome replication does not require type III PI4K activity and does not activate these kinases

    Host range and receptor utilization of canine distemper virus analyzed by recombinant viruses: Involvement of heparin-like molecule in CDV infection

    Get PDF
    AbstractWe constructed recombinant viruses expressing enhanced green fluorescent protein (EGFP) or firefly luciferase from cDNA clones of the canine distemper virus (CDV) (a Japanese field isolate, Yanaka strain). Using these viruses, we examined susceptibilities of different cell lines to CDV infection. The results revealed that the recombinant CDVs can infect a broad range of cell lines. Infectivity inhibition assay using a monoclonal antibody specific to the human SLAM molecule indicated that the infection of B95a cells with these recombinant CDVs is mainly mediated by SLAM but the infection of 293 cell lines with CDV is not, implying the presence of one or more alternative receptors for CDV in non-lymphoid tissue. Infection of 293 cells with the recombinant CDV was inhibited by soluble heparin, and the recombinant virus bound to immobilized heparin. Both F and H proteins of CDV could bind to immobilized heparin. These results suggest that heparin-like molecules are involved in CDV infection

    A Serine Palmitoyltransferase Inhibitor Blocks Hepatitis C Virus Replication in Human Hepatocytes

    Get PDF
    Background & AimsHost cell lipid rafts form a scaffold required for replication of hepatitis C virus (HCV). Serine palmitoyltransferases (SPTs) produce sphingolipids, which are essential components of the lipid rafts that associate with HCV nonstructural proteins. Prevention of the de novo synthesis of sphingolipids by an SPT inhibitor disrupts the HCV replication complex and thereby inhibits HCV replication. We investigated the ability of the SPT inhibitor NA808 to prevent HCV replication in cells and mice.MethodsWe tested the ability of NA808 to inhibit SPT’s enzymatic activity in FLR3-1 replicon cells. We used a replicon system to select for HCV variants that became resistant to NA808 at concentrations 4- to 6-fold the 50% inhibitory concentration, after 14 rounds of cell passage. We assessed the ability of NA808 or telaprevir to inhibit replication of HCV genotypes 1a, 1b, 2a, 3a, and 4a in mice with humanized livers (transplanted with human hepatocytes). NA808 was injected intravenously, with or without pegylated interferon alfa-2a and HCV polymerase and/or protease inhibitors.ResultsNA808 prevented HCV replication via noncompetitive inhibition of SPT; no resistance mutations developed. NA808 prevented replication of all HCV genotypes tested in mice with humanized livers. Intravenous NA808 significantly reduced viral load in the mice and had synergistic effects with pegylated interferon alfa-2a and HCV polymerase and protease inhibitors.ConclusionsThe SPT inhibitor NA808 prevents replication of HCV genotypes 1a, 1b, 2a, 3a, and 4a in cultured hepatocytes and in mice with humanized livers. It might be developed for treatment of HCV infection or used in combination with pegylated interferon alfa-2a or HCV polymerase or protease inhibitors

    In Vitro And in Vivo Translational Efficiencies of the 5′ Untranslated Region from Eight Genotype 2 Bovine Viral Diarrhea Virus Field Isolates

    Get PDF
    We determined the in vitro and in vivo translational efficiency mediated by the internal ribosomal entry site (IRES) from eight BVDV2 field isolates varying in virulence using a bicistronic reporter vector in rabbit reticulocyte lysates (RRL), and in primate and bovine cell lines. Using a T7-promoter system, the high virulence isolates had greater translational efficiencies in bovine lymphocytes (BL-3 cells), than did the low virulence isolates. The low virulence isolates translated with greater efficiencies than the high virulence isolates in RRL, African green monkey kidney (CV-1) and bovine turbinate (BT) cells. Our results demonstrate that despite a high degree of sequence identity in the 5′ untranslated region (UTR), subtle differences in the primary and secondary structures, as well as differences in cell lines, influence translational efficiencies
    corecore