
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

130,000 155M

TOP 1%154

5,300

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/387219662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

Chapter

Host-Targeting Antivirals for 
Treatment of Hepatitis C
Bouchra Kitab, Michinori Kohara  

and Kyoko Tsukiyama-Kohara

Abstract

Treatment of chronic hepatitis C virus (HCV) infection has been revolutionized 
during last years with the development of highly potent direct-acting antivirals 
(DAAs) specifically targeting HCV proteins. DAAs are the current standard of care 
for patients with chronic hepatitis C, leading to high cure rates. However, some 
hurdles exist including the high cost of these therapies restricting access to patients, 
their inability to protect against the risk of developing hepatocellular carcinoma in 
patients with advanced fibrosis, and emergence of resistant variants resulting in 
treatment failure. New therapeutic options should be essential to overcome DAAs 
limitations and improve survival. By targeting host-cell factors involved in HCV life 
cycle, host-targeting antivirals (HTAs) offer opportunity for promising anti-HCV 
therapy with low mutational rate and may act in a synergistic manner with DAAs to 
prevent viral resistance and reduce viral replication. Moreover, HTAs could be effec-
tive in difficult-to-cure patients by acting through complementary mechanisms. In 
this chapter, we will focus on the latest and most relevant studies regarding the host-
cell factors required in HCV infection and explored as targets of antiviral therapy, 
we will also discuss the HTAs evaluated in preclinical and clinical development and 
their potential role as alternative or complementary therapeutic strategies.

Keywords: chronic hepatitis C, direct-acting antivirals, cell factors, host-targeting 
antivirals, antiviral therapy

1. Introduction

Hepatitis C virus (HCV) is a major causative agent of chronic liver diseases. 
Globally, it is estimated that 71 million people have chronic HCV infection, defined 
as the persistence of HCV genome in the blood for at least six months after the onset 
of acute infection [1, 2]. Patients with chronic HCV infection are at high risk of 
developing liver cirrhosis, hepatic decompensation, and hepatocellular carcinoma 
(HCC), which are the most common indications for liver transplantation [3]. Until 
2011, the standard-of-care therapy for HCV infection consisted on pegylated-
interferon alpha in combination with the nucleotide analogue ribavirin (peg-IFNα/
RBV) leading to sustained virologic response (SVR) in 54–63% of patients with 
substantial side effects [4, 5]. The great advances in HCV research allowed the 
development of direct-acting antivirals (DAAs) which have dramatically improved 
the standard-of-care for HCV-infected patients [6, 7]. As their name suggests, DAAs 
are class of antivirals that directly target viral proteins required in HCV replication. 
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The first-generation DAAs used in combination with peg-IFNα/RBV improve SVR 
rates by approximately 70% [8, 9]. Subsequently, IFN-free DAAs regimens, based 
on the use of highly potent and well-tolerated DAAs combinations were introduced 
and currently used for treatment, providing SVR in more than 95% of patients, 
with minimal side effects [10, 11].

Although DAAs offer the chance of viral cure for most of HCV patients, there are 
some limitations that restrain their full potential, including their high cost limiting 
access to treatment, the high mutation rate of HCV which may lead to the selection of 
DAA-resistant HCV variants resulting in treatment failure, and the low SVR rate in 
difficult-to-treat patients such as those with advanced liver cirrhosis [12–14]. Recent 
studies reported the inability of DAAs to protect against the risk of HCV re-infection 
of liver graft in transplanted patients, or the risk of developing HCC in patients with 
advanced liver fibrosis [15, 16]. Consequently, there is a need for other therapeutic 
options with better affordability, high rate of viral cure, and fewer cases of viral resis-
tance. HCV requires host-cell factors to establish productive infection and propaga-
tion, thus development of host-targeting antivirals (HTAs) that interfere with these 
factors provides promising antiviral candidates, which may help to improve the cur-
rent landscape of hepatitis C therapy [14, 17]. Several HTAs have been evaluated for 
preclinical and clinical development with some of them showing promising results. 
In this chapter, we provide an overview on recent advances in antiviral therapies 
against HCV and highlight the most important host factors explored as therapeutic 
targets. We also discuss the different HTAs evaluated in preclinical and clinical 
development and their potential impact as alternative or complementary therapeutic 
options to cure HCV infection and associated liver diseases.

2. Molecular virology of HCV

HCV is an enveloped, positive-sense single-stranded RNA virus, classified in the 
hepacivirus genus of Flaviviridae family [18]. HCV genomic RNA (~9.6 kb in length) 
contains highly structured 5′- and 3′-untranslated regions (UTRs) flanking a single 
open reading frame [19, 20]. The 5’-UTR is highly conserved and contains an internal 
ribosome entry site (IRES) essential to initiate viral RNA translation [21]. The high error 
prone of HCV NS5B RNA-dependent RNA polymerase leads to frequent mutations 
across the viral genome, resulting in high intra-patient variability (1–5%) represented in 
the form of quasispecies, and high inter-patient variability manifested by the existence 
of 7 genotypes, and 67 confirmed subtypes [22, 23]. HCV genotypes differ from each 
other by 31–33% at nucleotide level, compared with 15–25% between subtypes within a 
given genotype [24]. A global survey showed that HCV genotypes 1 and 3 are the most 
prevalent worldwide accounting for 46% and 30% of global HCV cases, respectively. 
Genotypes 2, 4, 5, and 6 are responsible for the majority of remaining HCV cases: 9%, 
8%, <1%, and 5.4%, respectively [25]. Genotype 7 has been identified in Canada in few 
patients originating from Central Africa [26]. HCV genotypes have distinct geographic 
distributions throughout the world, which reflect differences in mode of transmis-
sion and ethnic variability. While genotype 1a is predominant in USA, genotype 1b 
dominated in Europe and Japan, genotype 2 dominated in West Africa and parts of 
South America, genotype 3 in south Asia, genotype 4 in middle East and Central/North 
Africa, genotype 5 in South Africa, and genotype 6 in Southeast Asia [25].

HCV replication cycle initiates through viral attachment and entry into the 
hepatocyte by clathrin-mediated endocytosis [27, 28]. The acidic pH of the early 
endosomes is essential to trigger fusion leading to nucleocapsid uncoating and 
release of the viral RNA genome in the cytosol [29]. At the rough endoplasmic 
reticulum (ER), HCV genomic RNA is translated via an HCV-IRES mediated 
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mechanism to produce a single polyprotein of ~3010 amino acids [30]. This poly-
protein is cleaved by cellular and viral proteases into three structural proteins that 
build up the HCV particle (Core and envelope glycoproteins E1 and E2) and seven 
nonstructural (NS) proteins permitting viral RNA replication, and viral particle 
assembly (p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B) [31]. The viroporin p7 and 
the cysteine protease NS2 are involved in viral particle assembly. NS3, NS4A, NS4B, 
NS5A, NS5B and HCV genomic RNA template form the viral replicase complex for 
HCV RNA replication [31, 32]. As all positive-strand RNA viruses, HCV induces 
massive rearrangements of cytoplasmic membranes in the host cell to generate a 
replication-favorable compartment called “the membranous web” in the case of 
HCV [33]. The membranous web is mainly composed of double membrane vesicles 
(DMVs) derived from the ER and may serve to increase the local concentration 
of viral proteins and relevant host cell factors required for efficient viral RNA 
replication [33, 34]. Within the replicase complex, the plus-strand RNA genome is 
replicated into a minus-strand RNA intermediate, which then gives rise to multiple 
plus-stranded HCV RNA copies [35]. The importance of specific lipids in HCV 
RNA replication has been highlighted. Indeed, HCV infection induces synthesis of 
specific sphingolipids that enhance NS5B-mediated RNA replication [36].

The newly progeny plus-strand RNAs can either be used for translation, there-
fore production of new viral proteins, or synthesis of new minus-strand RNAs, or 
packaged into viral particles. It has been shown that HCV assembly initiates at the 
ER membrane in close proximity to lipid droplets where the viral RNA is packaged 
into capsids [37]. HCV proteins NS5A and core have been reported as key players in 
the translocation of viral structures from the replication complex to lipid droplets 
[38]. The nascent nucleocapsids bud into the ER thereby acquiring a ER-derived 
lipid bilayer envelope in which the viral glycoproteins E1 and E2 are anchored as 
heterodimers [39]. Interestingly, a peculiar feature of HCV is its association with 
host lipoproteins and apolipoproteins such as ApoE, ApoB, and ApoA1, leading to 
the formation of lipo-viroparticles (LVPs) [40, 41]. Incorporation of host lipopro-
teins into HCV virions plays an essential role in virus infectivity and immune escape 
[40]. Next, LVPs traffic through the Golgi secretory pathway for final egress [42]. 
Several key components of the endosomal transport system are necessary for the 
egress of HCV LVPs, including the endosomal-sorting complex required for trans-
port (ESCRT) pathway and Rab proteins [43, 44]. Estimations showed that approxi-
matively 1.3 x 1012 HCV virions are produced per day in each infected patient [45].

3.  Impact of current antiviral therapies in the clinical outcome of 
hepatitis C

There are three critical points in the natural history of HCV infection including 
development of chronic hepatitis C, development of liver cirrhosis, and development 
of cirrhosis-related complications including portal hypertension and hepatocel-
lular carcinoma (HCC) [46]. Chronic hepatitis C is a slowly progressive disease. 
It is estimated that 20–30% of chronic HCV patients develop liver cirrhosis over a 
20 years period [46]. A deep inter-individual variability exists in the progression of 
hepatitis C and response to antiviral treatment, mainly related to viral factors such 
as HCV genotype, viral load, or coinfection with hepatitis B virus (HBV) or human 
immunodeficiency virus (HIV), and host factors such as patient’s genetic background 
including interleukin-28B (IL-28B) polymorphism, age, gender, and obesity [47, 48].

The ultimate aim of antiviral treatment is to cure chronic HCV infection, 
in order to prevent the progression to liver cirrhosis and severe hepatic events 
(decompensation and HCC), and thereby improve patient survival and prevent 
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HCV transmission. Viral cure, known as sustained virological response (SVR) is 
defined as undetectable HCV RNA in blood 12–24 weeks after completing antiviral 
treatment [49, 50]. Current anti-HCV treatment consists on all-oral, IFN-free 
regimens combining highly potent, and well tolerated DAAs achieving SVR rates 
over 95% [11, 50]. DAAs specifically target HCV nonstructural proteins resulting 
in disruption of HCV replication (Figure 1). According to the therapeutic target 
and mechanism of action, DAAs are divided into four categories: NS3/4A protease 
inhibitors (e.g. simeprevir, paritaprevir, glecaprevir), NS5A protein inhibitors 
(e.g. velpatasvir, daclatasvir, pibrentasvir), NS5B nucleoside polymerase inhibitors 
and NS5B non-nucleoside polymerase inhibitors (e.g. sofosbuvir and dasabuvir, 
respectively) [11, 49, 50] (Figure 1). Combination of DAAs targeting different 
viral proteins regularly each of them with high potency and high genetic barrier, 
allows a high success of treatment regimens. Also, combination regimens compris-
ing two drugs are preferred to triple combination regimens, to minimize the risk of 
side-effects and drug–drug interactions [11, 49, 50].

The introduction of DAAs has many positive impacts, through decreasing the 
incidence of severe hepatic complications and extra-hepatic diseases and reducing 
hepatitis C-related mortality [51, 52]. However, the high cost of DAAs still a barrier to 
access to therapy [12, 53]. According to recent estimations, the overall access to DAA 
is less than 10% of the HCV-infected patients on a global level [54]. Moreover, the 
potency of DAAs can be impaired by the emergence of specific amino acid substitu-
tions designated resistance-associated substitutions (RASs). As an RNA virus, HCV 
easily develops a resistance to antiviral treatments due to its error-prone replication 
property and drug pressure. Risk of treatment failure is low in patients receiving 
2 different categories of highly potent DAAs [13]. NS3/4A protease inhibitors are 
generally unaffected earlier by RASs, but many NS5A inhibitors continue to have 
overlapping resistance profiles. Furthermore, large studies have shown that a higher 
proportion of patients failed by an NS5A inhibitor-based regimen developed RASs 
than patients failed by NS3/4A protease inhibitor-based regimens [14, 55, 56]. The 
prevalence of RASs varied among HCV genotypes. HCV genotype 3 exhibits the 

Figure 1. 
HCV genomic RNA and encoded viral proteins; virological functions of targeted non-structural proteins for 
direct-acting antivirals (DAAs) therapy. UTR, untranslated region; IRES, internal ribosome entry site.



5

Host-Targeting Antivirals for Treatment of Hepatitis C
DOI: http://dx.doi.org/10.5772/intechopen.95373

highest resistance to DAAs therapy, with lower SVR rates compared to other geno-
types [57]. Moreover, the debate continues about DAAs treatment and development 
of HCC. Some studies have shown that DAAs treatment was not associated with an 
increase in the development of HCC [58, 59]. Other studies have shown conflicting 
results, indicating that DAAs therapy is associated with an increase in the recur-
rence of HCC in patients previously cured by liver transplantation [60]. Collectively, 
these findings indicate that surveillance for HCC should be continued especially for 
patients with advanced fibrosis and cirrhosis. Interestingly, the persisting risk for 
HCC development following SVR in patients treated with DAAs raises questions 
about the mechanisms that maintain HCC risk in these patients after viral cure.

4. Role of host-targeting antivirals in therapy of HCV infection

HCV exploits the host cell extensively to complete replication cycle and establish 
persistent infection. The unveiling of HCV-host cell interactions at both structural 
and functional levels has been investigated intensely, in relation with great progress 
in HCV cell culture systems and experimental animal models, and also advances 
in functional genomics screening, including genome-wide small interfering RNA 
(siRNA) screens and genome-scale CRISPR–Cas screens [61–63]. These tools paved 
the way for the identification of host-encoded factors involved in each step of HCV 
life cycle [63, 64]. Characterization of these factors, also known as host dependen-
cies factors, provides not only critical insights into mechanisms of HCV pathogen-
esis, but also novel candidates for antiviral therapy.

To cure HCV infection, a therapeutic drug should combine a potent antiviral 
activity and a high genetic barrier to viral resistance. Unlike DAAs, which target 
viral proteins of high variability, most of host-targeting antivirals (HTAs) are 
expected to have a high genetic barrier to viral resistance since host factors are less 
prone to mutations [65]. In addition, HTAs are usually genotype-independent and 
thus exhibit a pan-genotypic antiviral activity. Nonetheless, a major concern in the 
usage of HTAs is their interference with physiological functions of targeted host 
factors, which may induce cellular toxicity and side effects mutations [65, 66]. In 
the following sections, we discuss recent advances in HTAs against HCV that have 
potential as new therapeutic options and are in preclinical/clinical development. We 
also discuss their potential to overcome the current challenges of anti-HCV treat-
ment. Table 1 summarizes the different HTAs evaluated against HCV with their 
targeted host-cell factors and current development phase.

4.1 HTAs involved in HCV entry

HCV entry is the first step of virus–host cell interactions required for spread 
and maintenance of infection. HCV enters the hepatocyte through a highly orches-
trated process involving HCV envelope glycoproteins E1 and E2 and four main 
host-cell receptors: the scavenger receptor class B type I (SR-BI), the human cluster 
of differentiation 81 (CD81) and the tight-junction proteins Claudin-1 (CLDN-1) 
and Occludin (OCLN) [67–69]. A genome-scale CRISPR/Cas9 knockout screening 
in human cells demonstrated that cellular receptors CD81, CLDN1, and OCLN are 
particularly critical for HCV infection in vitro, and thus determine the tropism of 
HCV for human cells [63]. HTAs targeting HCV entry offer the advantage of block-
ing HCV life cycle before the beginning of viral genome translation and replication, 
which might block cell–cell transmission, virus spread, and thus persistent infec-
tion [70]. Interestingly, because viral entry plays an important role during HCV 
re-infection of the graft in end-stage patients undergoing liver transplantation, 
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entry inhibitors represent an interesting strategy to prevent graft reinfection [71]. 
Numerous compounds have been evaluated, the most advanced was ITX-5061, an 
antagonist of SR-BI that reduces SR-BI-mediated HDL lipid transfer [72]. SR-BI 
binds HDL and delivers lipids into the cell membrane. The lipid transfer activities of 
SR-BI play an important role in HCV entry, thus reducing cholesterol transfer into 
the cell membrane may be one possible mechanism by which ITX-5061 reduces HCV 
entry [72]. An in vitro study indicated that ITX-5061 functions synergistically with 
the protease inhibitor telaprevir, and no cross-resistance is expected between ITX-
5061 and HCV polymerase or protease inhibitors [73]. ITX-5061 completed a clinical 

Host factor Host-targeting 

antiviral

HCV life cycle step Phase of 

development

References

Scavenger 
receptor BI 
(SR-BI)

ITX-5061 Entry Phase 2 [73, 74]

Human cluster of 
differentiation 81 
(CD81)

Anti-CD81 mAbs Entry Preclinical [75]

Claudin-1 
(CLDN1)

Anti-CLDN1 mAbs 
(OM-7D3-B3, H3L3)

Entry Preclinical [76–79]

Occludin (OCLN) Anti-OCLN mAbs 
(Xi 1-3, Xi 37-5)

Entry Preclinical [80]

Epidermal growth 
factor receptor 
(EGFR)

Erlotinib Entry Preclinical [82]

Nieman-Pick 
C1-Like 1 
(NPC1L1)

Ezetimibe Entry Phase 1 [81, 83]

Cyclophilin A - Alisporivir RNA replication Phase 3 
(halted)

[87, 90–93]

- NIM811 RNA replication Phase 2 [88]

- SCY-635 RNA replication Phase 2a [89, 94]

micoRNA-122 -Miravirsen/
SPC3649

RNA replication Phase 2a [102–105]

-RG-101 RNA replication Phase 1b [106–108]

Diglyceride 
acyltransferase I 
(DGAT-I)

-siRNA Assembly Preclinical [109]

-Quercetin Assembly Phase 1 [110, 111]

-LCQ908/Pradigastat Assembly Phase 2 [112]

Acyl coenzyme 
A:cholesterol 
acyltransferase 
(ACAT)

Avasimibe Assembly/Egress Preclinical [114, 115]

Adaptor-
associated kinase 1 
(AAK1)

Sunitinib Assembly/Egress Preclinical [116]

Cyclin-associated 
kinase (GAK)

-Erlotinib Assembly/Egress Preclinical [117]

-Isothiazolo [5,4-b]
pyridine

Assembly/Egress Preclinical [118]

Table 1. 
Host-targeting antivirals against HCV with their targeted host-cell factors and current phase of clinical 
development.
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phase 1b study. Oral ITX-5061 was safe and well tolerated over 28 days of dosing in 
noncirrhotic adults with chronic HCV infection [74]. This compound is undergoing 
phase II clinical trials in HCV-positive patients and appears to be a promising option 
for treatment [74]. Antibodies targeting CD81 have also been investigated and 
demonstrated potent antiviral effects in preclinical mouse studies [75]. In the case of 
CLDN1-targeting inhibitors, a rodent anti-CLDN1 mAb (OM-7D3-B3) demonstrated 
antiviral potential against HCV infection in primary human hepatocytes (PHHs) 
and human liver-chimeric mice [76, 77]. Towards a clinical development, Colpitts 
and colleagues [78] successfully humanized anti-CLDN1 mAb (OM-7D3-B3) into 
human IgG4 isotype, designed as H3L3. This antibody exhibits pan-genotypic activ-
ity against HCV entry without viral escape both in vitro and in mouse model [78]. 
Furthermore, H3L3 demonstrated a synergy with DAAs sofosbuvir and daclatasvir. 
Such synergy could allow shortening of treatment duration, thus reducing costs 
and side effects [79]. OCLN may also be considered as a potential target. To date, 
two successful human-rat chimeric mAbs have been developed against OCLN, and 
completely inhibit HCV infection in vitro and in human liver-chimeric mice without 
side effects [80]. Other inhibitors of kinases and host-cell pathways involved in 
HCV entry have been evaluated in vitro and significant results have been obtained 
in mouse models including Nieman-Pick C1-Like 1 (NPC1L1) and epidermal growth 
factor receptor (EGFR) [81, 82]. The clinically approved EGFR inhibitor Erlotinib, 
that prevents the formation of CLDN1-CD81 complex, and NPC1L1 inhibitor 
Ezetimibe, that decreases systemic cholesterol in patients, markedly impaired the 
establishment of HCV infection in the uPA-SCID mouse model [81, 82]. However, 
in a phase I clinical trial that enrolled, Ezetimibe elicits only minor effects on HCV 
viral loads in patients undergoing liver transplantation [83].

4.2 HTAs involved in HCV RNA replication

Targeting HCV RNA replication is a promising approach to eradicate HCV from 
infected liver cells in patients. The most advanced HTAs against HCV RNA replica-
tion are the inhibitors of Cyclophilin A (CypA) and antagomirs of microRNA-122 
(miR-122). Cyclophilin A (CypA) is an essential proviral factor for HCV replica-
tion, and interacts with HCV NS5A protein to initiate the formation of the replicase 
complex, and thereby promote viral RNA replication [84, 85]. Specific inhibition 
of CypA by cyclosporine A destroys the CypA/NS5A complex and suppresses 
HCV RNA replication in vitro [86]. Because cyclosporine A exhibits both antiviral 
and immunosuppressive activities, non-immunosuppressive antiviral derivatives 
of cyclosporine A were developed, including Alisporivir/Debio-025, N-methyl-
4-isoleucine-cyclosporin (NIM811), and SCY-635 [87–89]. The comparison of 
CsA-resistant mutants for resistance to Alisporivir and NIM811 demonstrated that 
Alisporivir has the highest resistant activity against the adaptive mutations [90]. The 
antiviral effect of Alisporivir on HCV genotypes 1a or 1b has been confirmed in chi-
meric mice with human hepatocytes [87]. Alisporivir is the most advanced in clinical 
development. In a phase II clinical trial, administration of Alisporivir in combina-
tion with pegIFN-α/RBV to treatment-naïve HCV genotype 1 patients, resulted in 
SVR rates of 69–76% compared to 55% in the group receiving only pegIFN-α/RBV 
[91]. Recently, Alisporivir was explored as an interferon-free combination regimen 
with DAAs in HCV genotype 2 and 3 infected patients, resulting into SVR rates of 
80–85% [92]. However, the development of Debio-025 was halted following the 
report of seven cases of acute pancreatitis [93]. For CypA inhibitor SCY-635, a clini-
cal phase 2a study demonstrated that SCY-635 reduces HCV viral load and increases 
plasma levels of type I and III IFNs and IFN-stimulated genes, thereby contributes to 
the activation of innate antiviral immunity [94].
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Another important host factor is the liver-specific microRNA-122 (miR-122). 
microRNAs are small (~22 nucleotides) endogenous noncoding RNAs, which bind 
to the 3′-untranslated region of the messenger RNAs (mRNAs), resulting in gene 
silencing through mRNA degradation or translational repression [95]. The replication 
of HCV in hepatocytes has been shown to be critically dependent on miR-122, as the 
sequestration of miR-122 in liver cells results in marked loss of replicating HCV RNAs 
[96]. Several mechanisms by which miR-122 promotes HCV replication have been 
reported. miR-122 promotes HCV genome replication by direct binding with two adja-
cent sites in the 5’-UTR of the HCV RNA [97]. miR-122 protects HCV RNA genome 
from degradation by host 5′-3′ exonucleases Xrn1 and Xrn2, and phosphatases DOM3Z 
and DUSP11 [98–101]. Therapeutic approaches based on inhibition of miR-122 using 
modified anti-sense oligonucleotides have been generated. Miravirsen/SPC3649 is a 
locked nucleic acid-modified DNA antisense oligonucleotide that sequesters mature 
miR-122 in a highly stable heteroduplex, thereby inhibiting its function. Miravirsen 
demonstrated antiviral activity against all HCV genotypes in vitro [102]. In a phase 2a 
study, the safety and efficacy of miravirsen were evaluated in 36 patients with chronic 
HCV genotype 1 infection. The results showed a prolonged and dose-dependent 
decrease in HCV RNA levels without evidence of viral resistance and serious adverse 
effects [103]. Miravirsen treatment results in a prolonged reduction in cholesterol 
levels in line with the effects of miR-122 on cholesterol metabolism [103, 104]. In addi-
tion, Miravirsen demonstrated a potent antiviral activity when tested against DAA-
resistant HCV variants [105]. Another antimir-122 molecule is RG-101, a hepatocyte 
targeted N-acetylgalactosamine conjugated oligonucleotide that antagonizes miR-122 
[106]. Van der Ree and colleagues [106] performed a phase 1B study that assessed the 
safety, tolerability and antiviral effect of RG-101 in 32 patients chronically infected 
with HCV genotypes 1, 3, or 4. The results showed that RG-101 was well tolerated and 
resulted in substantial decrease in viral load in all treated patients within 4 weeks, and 
sustained virological response in 3 patients at week 76 of follow-up. However, viral 
rebound between weeks 5 and weeks 12 was observed in six patients with HCV geno-
type 1 [106]. Another phase 1B study assessed the effects of dosing RG-101 on antiviral 
immunity in chronic HCV patients and showed that a single dose of RG-101 led to a 
decrease in HCV RNA levels in all patients and SVR >76 weeks in 3 patients [107]. The 
combination of a highly potent DAAs with miravirsen or RG-101 could potentially 
shorten HCV treatment duration. Recently, two clinical studies were performed to 
evaluate the potential of combining a NS5B inhibitor (GSK2878175) and RG-101 as a 
single- visit curative regimen for chronic hepatitis C [108]. GSK2878175 molecule dem-
onstrated acceptable safety, tolerability and pan-genotypic antiviral activity, especially 
for HCV genotype 3 that is considered difficult to treat. The results showed that daily 
oral administration of GSK2878175 with a single dose of RG- 101 results in high cure 
rates if the treatment duration is >9 weeks in noncirrhotic, treatment-naïve patients 
with HCV genotype 1 and 3 infections [108]. Altogether, these findings highlight the 
clinical potential of miR-122 inhibitors as complementary therapeutic strategy that 
especially may be valuable for difficult-to-cure patients with current DAAs.

4.3 HTAs involved in HCV assembly and egress

There is a close relationship between HCV particle biogenesis and host-cell lipid 
metabolism. HCV circulates as lipo-viralparticles (LVPs) in the blood of infected 
patients, thus targeting the host-cell factors involved in the lipid metabolism may 
provide potential therapeutic options. An essential cellular enzyme involved in this 
process is the diglyceride acyltransferase I (DGAT-I) which directly interacts with 
the HCV core protein, and is required for the trafficking of core to lipid droplets 
[109]. Inhibition of DGAT1 activity or RNAi-mediated knockdown of DGAT1 
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severely impairs infectious viral particles production in vitro, implicating DGAT-1 as 
a new target for antiviral therapy [109]. Interestingly, quercetin, a natural flavonoid 
that inhibits DGAT-I, was reported to have anti-HCV properties [110]. In a phase 
I study, quercetin exhibited high safety and potent antiviral activity in patients 
with chronic HCV infection [111]. Moreover, the antiviral efficacy of the DGAT-I 
inhibitor LCQ908/pradigastat was assessed in phase II clinical trials in patients 
with HCV infection, but no significant decrease in HCV viral load was observed in 
treated patients [112]. Further studies are needed to determine whether the DGAT-I 
inhibitor could be used in combination with DAAs.

Apolipoproteins (e.g. ApoE, ApoB, and ApoA1) are essential to the formation of 
infectious HCV particles during viral assembly, and highly infectious HCV par-
ticles are usually associated with more lipoproteins [40, 113]. Mechanistic studies 
demonstrated that Avasimibe, an inhibitor of acyl coenzyme A:cholesterol acyl-
transferase (ACAT), induced downregulation of microsomal triglyceride transfer 
protein expression, resulting in reduced ApoE and ApoB secretion [114]. Avasimibe 
significantly impairs the assembly of infectious HCV virions and exhibits signifi-
cant pan-genotypic antiviral activity and great potential for combination therapy 
with DAAs [115]. Furthermore, the adaptor-associated kinase 1 (AAK1) and the 
cyclin-associated kinase (GAK) are known to regulate core-AP2M1 interaction 
[116]. Accordingly, Neveu and colleagues showed that AAK1 and GAK inhibitors, 
including the approved anti-cancer drugs sunitinib and erlotinib, can block HCV 
assembly [116, 117]. However, these compounds could induce adverse effects due 
to their lack of specificity. To overcome this limitation, a specific GAK inhibitor, 
isothiazolo [5,4-b]pyridine was developed [118]. This drug efficiently impairs HCV 
entry and assembly in vitro with limited off-target effects [118].

5. Conclusion and prospects

The great advances in hepatitis C treatment through the development of highly 
potent DAAs define the intense efforts towards a global eradication of HCV infec-
tion. However, most infected people live in low resource countries, which may limit 
access to treatment and restrain the impact of DAAs on the global burden of HCV 
infection and associated diseases. Another principal challenge is viral resistance, 
subsequent treatment failure and emergence of DAA-resistant variants. HTAs against 
host-cell factors required for HCV pathogenesis are promising candidates for devel-
opment as alternative or complementary therapeutic options. Intense research on 
HTAs is needed to develop highly effective drugs with the least side effects. Several 
HTAs are at different stages of preclinical and clinical development, which promise 
for enlarged therapeutic arsenal against chronic HCV infection in the future.
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