107 research outputs found

    Negative Binomial mixed models estimated with the maximum likelihood method can be used for longitudinal RNAseq data

    Get PDF
    Time-course RNAseq experiments, where tissues are repeatedly collected from the same subjects, e.g. humans or animals over time or under several different experimental conditions, are becoming more popular due to the reducing sequencing costs. Such designs offer the great potential to identify genes that change over time or progress differently in time across experimental groups. Modelling of the longitudinal gene expression in such time-course RNAseq data is complicated by the serial correlations, missing values due to subject dropout or sequencing errors, long follow up with potentially non-linear progression in time and low number of subjects. Negative Binomial mixed models can address all these issues. However, such models under the maximum likelihood (ML) approach are less popular for RNAseq data due to convergence issues (see, e.g. [1]). We argue in this paper that it is the use of an inaccurate numerical integration method in combination with the typically small sample sizes which causes such mixed models to fail for a great portion of tested genes. We show that when we use the accurate adaptive Gaussian quadrature approach to approximate the integrals over the random-effects terms, we can successfully estimate the model parameters with the maximum likelihood method. Moreover, we show that the boostrap method can be used to preserve the type I error rate in small sample settings. We evaluate empirically the small sample properties of the test statistics and compare with state-of-the-art approaches. The method is applied on a longitudinal mice experiment to study the dynamics in Duchenne Muscular Dystrophy. Contact:[email protected] Tsonaka is an assistant professor at the Medical Statistics, Department of Biomedical Data Sciences, Leiden University Medical Center. Her research focuses on statistical methods for longitudinal omics data. Pietro Spitali is an assistant professor at the Department of Human Genetics, Leiden University Medical Center. His research focuses on the identification of biomarkers for neuromuscular disorders.Development and application of statistical models for medical scientific researc

    Pathway analysis for family data using nested random-effects models

    Get PDF
    Recently we proposed a novel two-step approach to test for pathway effects in disease progression. The goal of this approach is to study the joint effect of multiple single-nucleotide polymorphisms that belong to certain genes. By using random effects, our approach acknowledges the correlations within and between genes when testing for pathway effects. Gene-gene and gene-environment interactions can be included in the model. The method can be implemented with standard software, and the distribution of the test statistics under the null hypothesis can be approximated by using standard chi-square distributions. Hence no extensive permutations are needed for computations of the p-value. In this paper we adapt and apply the method to family data, and we study its performance for sequence data from Genetic Analysis Workshop 17. For the set of unrelated subjects, the performance of the new test was disappointing. We found a power of 6% for the binary outcome and of 18% for the quantitative trait Q1. For family data the new approach appears to perform well, especially for the quantitative outcome. We found a power of 39% for the binary outcome and a power of 89% for the quantitative trait Q1

    Pathway testing for longitudinal metabolomics

    Get PDF
    We propose a top-down approach for pathway analysis of longitudinal metabolite data. We apply a score test based on a shared latent process mixed model which can identify pathways with differentially progressing metabolites. The strength of our approach is that it can handle unbalanced designs, deals with potential missing values in the longitudinal markers, and gives valid results even with small sample sizes. Contrary to bottom-up approaches, correlations between metabolites are explicitly modeled leveraging power gains. For large pathway sizes, a computationally efficient solution is proposed based on pseudo-likelihood methodology. We demonstrate the advantages of the proposed method in identification of differentially expressed pathways through simulation studies. Finally, longitudinal metabolite data from a mice experiment is analyzed to demonstrate our methodology.Functional Genomics of Muscle, Nerve and Brain Disorder

    Plasma lipidomic analysis shows a disease progression signature in mdx mice

    Get PDF
    Duchenne muscular dystrophy (DMD) is a rare genetic disorder affecting paediatric patients. The disease course is characterized by loss of muscle mass, which is rapidly substituted by fibrotic and adipose tissue. Clinical and preclinical models have clarified the processes leading to muscle damage and myofiber degeneration. Analysis of the fat component is however emerging as more evidence shows how muscle fat fraction is associated with patient performance and prognosis. In this article we aimed to study whether alterations exist in the composition of lipids in plasma samples obtained from mouse models. Analysis of plasma samples was performed in 4 mouse models of DMD and wild-type mice by LC-MS. Longitudinal samplings of individual mice covering an observational period of 7 months were obtained to cover the different phases of the disease. We report clear elevation of glycerolipids and glycerophospholipids families in dystrophic mice compared to healthy mice. Triacylglycerols were the strongest contributors to the signatures in mice. Annotation of individual lipids confirmed the elevation of lipids belonging to these families as strongest discriminants between healthy and dystrophic mice. A few sphingolipids (such as ganglioside GM2, sphingomyelin and ceramide), sterol lipids (such as cholesteryl oleate and cholesteryl arachidonate) and a fatty acyl (stearic acid) were also found to be affected in dystrophic mice. Analysis of serum and plasma samples show how several lipids are affected in dystrophic mice affected by muscular dystrophy. This study sets the basis to further investigations to understand how the lipid signature relates to the disease biology and muscle performance.Development and application of statistical models for medical scientific researc

    Penalized regression calibration: a method for the prediction of survival outcomes using complex longitudinal and high-dimensional data

    Get PDF
    Longitudinal and high-dimensional measurements have become increasingly common in biomedical research. However, methods to predict survival outcomes using covariates that are both longitudinal and high-dimensional are currently missing. In this article, we propose penalized regression calibration (PRC), a method that can be employed to predict survival in such situations. PRC comprises three modeling steps: First, the trajectories described by the longitudinal predictors are flexibly modeled through the specification of multivariate mixed effects models. Second, subject-specific summaries of the longitudinal trajectories are derived from the fitted mixed models. Third, the time to event outcome is predicted using the subject-specific summaries as covariates in a penalized Cox model. To ensure a proper internal validation of the fitted PRC models, we furthermore develop a cluster bootstrap optimism correction procedure that allows to correct for the optimistic bias of apparent measures of predictiveness. PRC and the CBOCP are implemented in the R package pencal, available from CRAN. After studying the behavior of PRC via simulations, we conclude by illustrating an application of PRC to data from an observational study that involved patients affected by Duchenne muscular dystrophy, where the goal is predict time to loss of ambulation using longitudinal blood biomarkers.Development and application of statistical models for medical scientific researc

    Longitudinal metabolomic analysis of plasma enables modeling disease progression in Duchenne muscular dystrophy mouse models

    Get PDF
    Duchenne muscular dystrophy is a severe pediatric neuromuscular disorder caused by the lack of dystrophin. Identification of biomarkers is needed to support and accelerate drug development. Alterations of metabolites levels in muscle and plasma have been reported in pre-clinical and clinical cross-sectional comparisons. We present here a 7-month longitudinal study comparing plasma metabolomic data in wild-type and mdx mice. A mass spectrometry approach was used to study metabolites in up to five time points per mouse at 6, 12, 18, 24 and 30 weeks of age, providing an unprecedented in depth view of disease trajectories. A total of 106 metabolites were studied. We report a signature of 31 metabolites able to discriminate between healthy and disease at various stages of the disease, covering the acute phase of muscle degeneration and regeneration up to the deteriorating phase. We show how metabolites related to energy production and chachexia (e.g. glutamine) are affected in mdx mice plasma over time. We further show how the signature is connected to molecular targets of nutraceuticals and pharmaceutical compounds currently in development as well as to the nitric oxide synthase pathway (e.g. arginine and citrulline). Finally, we evaluate the signature in a second longitudinal study in three independent mouse models carrying 0, 1 or 2 functional copies of the dystrophin paralog utrophin. In conclusion, we report an in-depth metabolomic signature covering previously identified associations and new associations, which enables drug developers to peripherally assess the effect of drugs on the metabolic status of dystrophic mice.Development and application of statistical models for medical scientific researc

    Joint modeling of longitudinal markers and time-to-event outcomes: an application and tutorial in patients after surgical repair of transposition of the great arteries

    Get PDF
    BACKGROUND: Most patients with congenital heart disease survive into adulthood; however, residual abnormalities remain and management of the patients is life-long and personalized. Patients with surgical repair of transposition of the great arteries, for example, face the risk to develop neoaortic valve regurgitation. Cardiologists update the prognosis of the patient intuitively with updated information of the cardiovascular status of the patient, for instance from echocardiographic imaging.METHODS: Usually a time-dependent version of the Cox model is used to analyze repeated measurements with a time-to-event outcome. New statistical methods have been developed with multiple advantages, of which the most prominent one being the joint model for longitudinal and time-to-event outcome. In this tutorial, the joint modeling framework is introduced and applied to patients with transposition of the great arteries after surgery with a long-term follow-up, where repeated echocardiographic values of the neoaortic root are evaluated against the risk of neoaortic valve regurgitation.RESULTS: The data are analyzed with the time-dependent Cox model as benchmark method, and the results are compared with a joint model, leading to different conclusions. The flexibility of the joint model is shown by adding the growth rate of the neoaortic root to the model and adding repeated values of body surface area to obtain a multimarker model. Lastly, it is demonstrated how the joint model can be used to obtain personalized dynamic predictions of the event.CONCLUSIONS: The joint model for longitudinal and time-to-event data is an attractive method to analyze data in follow-up studies with repeated measurements. Benefits of the method include using the estimated natural trajectory of the longitudinal outcome, great flexibility through multiple extensions, and dynamic individualized predictions.Development and application of statistical models for medical scientific researc

    Biventricular function in exercise during autonomic (thoracic epidural) block

    Get PDF
    Background Blockade of cardiac sympathetic fibers by thoracic epidural anesthesia (TEA) was previously shown to reduce right and left ventricular systolic function and effective pulmonary arterial elastance. At conditions of constant paced heart rate, cardiac output and systemic hemodynamics were unchanged. In this study, we further investigated the effect of cardiac sympathicolysis during physical stress and increased oxygen demand.Methods In a cross-over design, 12 patients scheduled to undergo thoracic surgery performed dynamic ergometric exercise tests with and without TEA. Hemodynamics were monitored and biventricular function was measured by transthoracic two-dimensional and M-mode echocardiography, pulsed wave Doppler and tissue Doppler imaging.Results TEA attenuated systolic RV function (TV SMODIFIER LETTER PRIME: - 21%, P < 0.001) and LV function (MV SMODIFIER LETTER PRIME: - 14%, P = 0.025), but biventricular diastolic function was not affected. HR (- 11%, P < 0.001), SVI (- 15%, P = 0.006), CI (- 21%, P < 0.001) and MAP (- 12%, P < 0.001) were decreased during TEA, but SVR was not affected. Exercise resulted in significant augmentation of systolic and diastolic biventricular function. During exercise HR, SVI, CI and MAP increased (respectively, + 86%, + 19%, + 124% and + 17%, all P < 0.001), whereas SVR decreased (- 49%, P < 0.001). No significant interactions between exercise and TEA were found, except for RPP (P = 0.024) and MV E DT (P = 0.035).Conclusion Cardiac sympathetic blockade by TEA reduced LV and RV systolic function but did not significantly blunt exercise-induced increases in LV and RV function. These data indicate that additional mechanisms besides those controlled by the cardiac sympathetic nervous system are involved in the regulation of cardiac function during dynamic exercise.Perioperative Medicine: Efficacy, Safety and Outcome (Anesthesiology/Intensive Care
    corecore