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We propose a top-down approach for pathway analysis of longitudinal metabo-
lite data. We apply a score test based on a shared latent process mixed model
which can identify pathways with differentially progressing metabolites. The
strength of our approach is that it can handle unbalanced designs, deals with
potential missing values in the longitudinal markers, and gives valid results
even with small sample sizes. Contrary to bottom-up approaches, correla-
tions between metabolites are explicitly modeled leveraging power gains. For
large pathway sizes, a computationally efficient solution is proposed based on
pseudo-likelihood methodology. We demonstrate the advantages of the proposed
method in identification of differentially expressed pathways through simula-
tion studies. Finally, longitudinal metabolite data from a mice experiment is
analyzed to demonstrate our methodology.
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1 INTRODUCTION

Assessing metabolite changes in healthy and diseased subjects over a follow-up period can improve our understand-
ing of disease progression and severity. Linear mixed effects models, multivariate regression models or the generalized
estimation equation method are common approaches to model the dynamics of each metabolite separately.1,2 Based on
such models we can identify which specific metabolites exhibit differential progression between experimental condi-
tions or groups of interest. An alternative approach to analyze the high-dimensional metabolite data is pathway analysis.
Pathways are a priori-defined sets of genomic features that are involved in a chemical reaction leading to a certain prod-
uct or change.3 Joint analysis of the metabolites in a pathway facilitates the biological interpretation of the findings
and increases statistical power.4 Statistical methods for pathway analysis can be classified into two general categories:
bottom-up and top-down.5 The bottom-up methods start with modeling the features individually and then aggregate
the individual P-values to get a pathway-level P-value (using various methods such as Fisher’s exact test, or Simes test).
These approaches do not take into account the correlation structure within the pathway and also lose information by
only using the P-value and not the full measured data. In addition, some of these approaches dichotomize the P-value (ie,
significant/nonsignificant) before testing the association leading to loss of information. By contrast, top-down methods
use all recorded measurements jointly to get pathway-level tests, for example, global test and gene-sets net correlations
analysis.6,7 Global test is a score-test which can assess the association between a set of features with a clinical outcome,
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for example, binary or survival. In particular, based on an appropriate regression model, it tests the hypothesis that at
least one of the features in the set is associated with the clinical outcome. Global test has desirable power properties when
features are correlated which is the case for pathways.

The aforementioned top-down pathway methods have been developed for cross-sectional designs, and extending them
to the longitudinal setting is not straightforward. Complications arise when the longitudinal features are missing at some
time-points or when measurements are collected at irregular points in time. In addition, in longitudinal designs the goal is
to test for changes over time at the pathway level, which requires explicit modeling of the progression of all the features in
the pathway. This is also the case in our motivating longitudinal experiment designed to study the dynamics of Duchenne
muscular dystrophy (DMD). DMD is a severe pediatric neuromuscular disorder caused by a lack of dystrophin. In this
experiment, 132 metabolites are measured at five time-points in a 7-month period from 21 dystrophin-lacking and five
wild type (WT) mice. These metabolites are classified in 11 pathways from the Wikipathways database and our goal is to
identify the biological pathways exhibiting differential progression over time between the mice groups. Pathway testing,
in this case, is complicated by the within-subject correlations, missing values, small sample size and the high number
of metabolites in some pathway. To our knowledge, there are currently no pathway analysis approaches that collectively
model the progression of metabolic pathways as a single dynamic system.

We follow a top-down approach and propose a pathway-level test which extends the global test to the longitudinal
setting. In particular, we propose a two-step procedure. In the first step, a shared latent process is used to model the longi-
tudinal progression and between-metabolite correlations at the same time at pathway level.8 The longitudinal progression
of the pathway for each individual is then summarized in terms of metabolite- and subject-specific shared random-effects.
In the second step, the estimated random-effects are used as covariates in the global test. We call this method shared
latent process mixed effects modeling within global test (SLaPMEG). In practice, the size of the pathway can vary from 1
to even a hundred metabolites. For larger pathways, estimation of the joint model at step 1 can be challenging. For such
cases, an additional novel contribution is a computationally efficient solution we propose based on pseudo-likelihood
methodology. In particular, we propose a fast approach to derive the predicted values for the random-effects and avoid
the numerical challenge of optimizing the joint model of all metabolites in the pathway.

The strengths of our proposed method are that (1) it exploits the within and between metabolites correlations, (2) it
can be applied in unbalanced designs potentially with missing values, (3) it can be used to analyze very large pathways,
(4) it provides an insight into the most influential metabolites in the pathway by inspecting the plots of the estimated
random-effects, (5) it can potentially handle any clinical outcome in the generalized linear model family and survival
outcomes, and (6) it is implemented in the R package SLaPMEG available online.

The rest of the article is organized as follows. In Section 2, we formulate the problem of testing the association of a
longitudinal pathway with a clinical binary outcome and introduce the SLaPMEG method. In Section 3, we present a
two-step likelihood estimation procedure for the parameters of the model. In Section 4, we propose a computationally
efficient solution based on pseudo-likelihood, to enhance the analysis of pathways with many features. In Section 5,
we empirically evaluate the performance of our method in terms of type I error and power under different simulation
settings. We also compare the performance of our proposed method to the naive approach, which models separately the
metabolites, ignoring the between-metabolite correlation. Finally, in Section 6, we illustrate the application of our method
using the motivating longitudinal experiment explained above, and end with some concluding remarks.

2 MODEL SPECIFICATION
Let ykij be the measurement for kth (k= 1, … , K) longitudinal feature of the ith subject (i= 1, … , n) at time point j.
We assume here that the K features belong to a common biological pathway. We denote measurement occasion with
(j= 1, … , nki), and the actual measurement time with t. Let also w be the n× 1 phenotypic vector (eg, a binary disease
status indicator), which is assumed to be linked to the longitudinal features (eg, metabolites).

We can assume that there is a true unobserved biological mechanism, Mi, which drives the association of the features
y with the phenotype w and induces correlation between the features in the pathway. To model the association between
the clinical outcome and the longitudinal metabolites, we assume that under a conditional independence assumption,
for each subject i the joint density is written as

f (yi,wi) = ∫ f (yi|Mi)f (wi|Mi)dF(Mi), (1)

where F is the cumulative distribution function of Mi and the other two terms in the integrand are specified below.



EBRAHIMPOOR et al. 3055

Shared latent process model f (yi | Mi): The progression and correlation structure of the K longitudinal features in
the pathway is modeled by

ykij = xi(tkij)T𝛽 + zi(tkij)Tui + bki + 𝜖kij, (2)

where the first two terms, xi(tkij)T𝛽 + zi(tkij)Tui, represent the shared time-dependent latent trajectory. In addition, xi(t)
and zi(t) are the time-dependent vectors of covariates for fixed and random-effects of the sizes n𝛽 and nu, corresponding
to parameters 𝛽 and u, respectively. In addition, ui is the subject-specific random term ui ∼ MVN(𝜇,Σu), where 𝜇 is a
vector of size nu and Σu is the corresponding variance matrix. For identifiability reasons, we will assume that 𝜇ui0 is zero
and var(ui0)= 1. Finally, the bki’s are feature-specific random-effects bki ∼ N(0, 𝜎2

bk
) and the 𝜖kij’s are error terms with

𝜖kij ∼ N(0, 𝜎2
𝜖K
) The random terms bki and ui convey the within-pathway and within-subject correlations and together

represent the unknown biological mechanism Mi.
Phenotypic model f (wi | Mi): Given that the biological mechanism Mi is captured by the random-effects bki and ui,

we can model the association between the longitudinal metabolites and the phenotype via a generalized linear model.
For instance, in case of a binary outcome with 𝜋i = Pr{wi = 1}, we have

log
(

𝜋i

1 − 𝜋i

)
= 𝛼0 +

nu∑
q=1

𝛼1quiq +
K∑

k=1
𝛼2kbki. (3)

Therefore, testing for association between clinical outcome and longitudinal metabolites corresponds to testing the
null hypothesis:

H0 ∶ 𝛼11 = · · · = 𝛼1nu = 𝛼21 = · · · = 𝛼2k = 0. (4)

Testing this hypothesis in a high-dimensional setting as we have here is further discussed in the following section.

3 ESTIMATION AND INFERENCE

Let Ω be the vector of size n𝛽 + (nu × (nu + 1)∕2) − 1 + 2K, including all parameters in the joint distribution in (1).
By combining models (2) and (3), we can formulate the individual contribution Li to the likelihood for subject i as

Li(Ω) = ∫ ∫ f (ui)f (wi|ui, bki)
K∏

k=1

{
f (bki)

nki∏
j=1

f (ykij|ui, bki)

}
duidbki, (5)

where the conditional distribution of vector yi of size ni =
∑

knki given the random effects is

f (yi|ui, bki) = (2𝜋)−
ni
2 |Σc

yi
|− 1

2 exp
{
−1

2
(yi − 𝜇yi)

T(Σc
yi
)−1(yi − 𝜇yi )

}
, (6)

where Xi and Zi are matrices of size n𝛽 × ni and nu ×ni, respectively. In addition, 𝜇yi = Xi(tkij)T𝛽 + Zi(tkij)Tui + bki is the
mean vector and, Σc

yi
= IK ⊗ 𝜎2

𝜖k
Inki is the variance matrix of the conditional distribution of yi. Here, I is the identity matrix

with the specified dimension.
The conditional distribution of the wi given the random effects is

f (wi|ui, bki) =

(
exp(𝛼0 +

∑nu
q=1 𝛼1quiq +

∑K
k=1 𝛼2kbki)

1 + exp(𝛼0 +
∑nu

q=1 𝛼1quiq +
∑K

k=1 𝛼2kbki)

)wi

×

(
1

1 + exp(𝛼0 +
∑nu

q=1 𝛼1quiq +
∑K

k=1 𝛼2kbki)

)(1−wi)

,

and the random effects ui and bki follow normal distribution as defined previously.
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To make inferences about the association of longitudinal omics yi and the phenotype wi, we need to estimate the vector
of parametersΩ by maximizing the likelihood function in (5). However, the number of parameters to be estimated (Ω) and
dimensionality of the random effects increases with pathway size, rendering our approach computationally intensive. To
address this issue we follow the two-step procedure described in Tsonaka et al.9 In our case, under the assumption that
f (M | y, w) depends only on y and that the parameter spaces for yi | Mi and wi | Mi are separable, we can show that

log f (yi,wi) = log f (wi|Mi) + log f (yi). (7)

Derivation of equality (7) is provided as supplementary material. Equation (7) implies that the observed marginal like-
lihood for the longitudinal features f (yi) can be fitted separately from the phenotypic model f (wi | Mi), hence reducing the
dimensionality of the problem. Consequently, we adopt a two-step estimation procedure, where in step I, Mi is estimated
in terms of the shared random process model (2). Then, in step II, the associations between pathway and phenotype are
estimated using the estimated random-effects from the previous step. A detailed explanation of each step is as follows.

Step I. Let Θ be the vector of unknown parameters for the shared latent process model (2), the normality of y, u and
b implies that the marginal densities of yi are normal with mean vector Ei = Xi𝛽 and variance matrix Σyi = ZiΣuZt

i + IK ⊗

𝜎2
bk

Inki + IK ⊗ 𝜎2
𝜖k

Inki , where Zi is the random effects matrix (ZT
i1(t), … ,ZT

ik(t), … ,ZT
iK(t))

T of dimension ni ×nu, where I

is a square matrix of all 1’s with the specified dimension. The marginal likelihood function is (Θ) = ∑
iLi(Θ), where

Li denotes the individual contributions to the likelihood. Then, estimation of Θ is possible by optimizing (Θ) using a
modified Marquardt algorithm presented by Proust et al.10

Based on the fitted model, using some matrix algebra, we also derive the random effects bki and ui which are obtained
as the modes of the posterior distribution of u and b given y. These are the best linear unbiased predictors for (ui, bki) and
are given by

E(ûi, b̂ki|yi) =
[

ZiΣu IK𝜎
2
bk
⊗ I(nki×1)

]T
Σ−1

yi
(yi − 𝛽Xi), (8)

The unknown parameters in (8) can be replaced by their estimates.
Step II. To further proceed with testing the association of pathway with the clinical outcome, we need to test the

null hypothesis in (4), based on the model presented in (3). In low-dimensional settings, such a hypothesis may be tested
using the multivariate Wald test or likelihood ratio test. However, in high-dimensional settings which is common in omics
research, the score test is preferred. Assuming that the coefficients 𝛼 from (3) are samples from a common distribution
with expectation zero and variance 𝜏2, the null hypothesis in (4) is equivalent to the null hypothesis H0 ∶ 𝜏2 = 0. As
suggested by Goeman et al,6 this hypothesis can be tested using a score test and the test statistic

Q = (w − 𝜇w)TRRT(w − 𝜇w)
(nu + K)(w − 𝜇w)T(w − 𝜇w)

,

where 𝜇w is the expectation of w under H0 and R is the matrix of all estimated random-effects (ui and bki). Under the
null hypothesis, the Q statistic from global test is distributed as a weighted sum of 𝜒2 variables.11 However, small sample
sizes are quite common in genomic studies where the asymptotic distribution may be a poor approximation. Therefore,
for small sample sizes the P-value is computed based on the empirical distribution of Q which is calculated by phenotype
permutation. It is possible to implement this two-step procedure in R using the lcmm package in step I and the globaltest
package in step II. The R package SLaPMEG combines the functions from these two packages with the additional option
of pairwise method for larger pathways. The R package SLaPMEG is available via CRAN.

4 PAIRWISE FITTING FOR LARGE PATHWAYS

The first step of the procedure above becomes computationally intensive as the size of pathway, hence the dimension of
the vector Θ̂ increases. For instance, optimizing the joint marginal likelihood for a pathway of size 20 (with 30 subjects
measured at five occasions) would require estimation of 43 parameters which takes about 4 minutes on a standard desktop
computer. In addition, a joint model with a large number of parameters might not necessarily converge. In this section,
we offer a solution for these issues based on a pairwise modeling approach. This computational solution is an additional
novelty in our work.
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F I G U R E 1 Pairwise fitting
approach—A separate model is fitted on
each pair of longitudinal outcomes
(yr , ys) and the bivariate L(yr , ys)’s are
optimized giving rise to the MLE Θ̂

r,s

where Θ̂
r,s

= (𝛽r , 𝜎r , 𝛽s, 𝜎s). Parameters
that are estimated from more than one
pair, for example, 𝛽 are averaged, giving
rise to 𝛽, Σu, Σb, and Σ𝜖 . These estimates
are then used in Equation (8) to derive
the Empirical Bayes estimates from step
I based on the full joint model

We employ a pseudo-likelihood approach where a pseudo-likelihood function (LPL) replaces the original likelihood
function by a product over more tractable components.12,13 For the joint likelihood presented in (1), we can write the
pseudo-likelihood function as

LPL(Θ) = L(y1, y2|Θ1,2) + L(y1, y3|Θ1,3) + … + L(yK−1, yK|ΘK−1,K), (9)

where L(yr, ys|Θr,s) is the likelihood function for the rth and sth metabolites in the pathway and Θr,s is the vector of param-
eters as defined above which is estimated based on this pair. Equality (9) implies that we can avoid optimizing the full
joint likelihood presented in (5) and instead, fit the bivariate models separately. This greatly reduces the dimensionality
of the joint model and hence the computation time for optimizing it.

In practice, as depicted in Figure 1, first all 2K possible bivariate models are fitted and optimized, obviously certain
parameters are estimated more than once as they appear in multiple pairs, we combine the estimated values from these
bivariate models by averaging them to obtain estimates for the unknown parameters in (8). We chose to average, as averag-
ing preserves the properties of the original estimates so the final averaged estimates are also consistent and asymptotically
normally distributed.

To illustrate how the procedure works, take a pathway of three features as an example, the three models (y1, y2),
(y1, y3) and (y2, y3) are fitted. Then, the corresponding L(y1, y2), L(y1, y3) and L(y2, y3) are optimized, giving rise to
the MLE’s Θ̂

1,2
= (𝛽1,2

, Σ̂1,2
u , Σ̂1,2

b , Σ̂1,2
𝜖 ), Θ̂

1,3
= (𝛽1,3

, Σ̂1,3
u , Σ̂1,3

b , Σ̂1,3
𝜖 ) and Θ̂

2,3
= (𝛽2,3

, Σ̂2,3
u , Σ̂2,3

b , Σ̂2,3
𝜖 ). By averaging across the

parameters that are estimated more than once, such as 𝛽, we get Θ = (𝛽,Σu,Σb,Σ𝜖). Now we can obtain valid pre-
dictions of the random-effects by substituting the unknown parameters in Equation (8) using corresponding values
from Θ.

5 SIMULATION STUDY

5.1 Simulation study design

We designed a simulation study to evaluate the SLaPMEG approach in terms of type I error and power across several
scenarios with increasing sample size, pathway size, effect size and strength of correlation between metabolites and/or
repeated measures.

5.1.1 Data generation under joint model

Longitudinal metabolite data were simulated for 26 and 100 subjects which were randomly assigned to two pheno-
typic groups of equal sizes. We considered a short and longer follow-up, that is, with three and five repeated measures,
respectively. Four correlation scenarios were assumed; in the high-correlation scenario both the metabolites and repeated
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measures are highly correlated and the low-correlation structure is the opposite. There are also two intermediate scenarios
in which either the metabolites or the repeated measurements are highly correlated. To study the effect of pathway size,
we included pathways of size 3, 20, and 40.

The data were simulated based on the joint model presented earlier, with a grouping variable as phenotype. The model
includes a fixed effect of group (case/control status), fixed effect of time, a shared random intercept and slope ui and the
metabolite-specific random-effects bki. We will specify the model in (1) as

ykij = 𝛽0 + 𝛽1 ⋅ tkij + 𝛽2k ⋅ groupi + u0i + u1i ⋅ tkij + bki + 𝜖kij, (10)

where,

u0i ∼ N(0, 1), u1i ∼ N(0, 𝜎u),

bki ∼ N(0, 𝜎bk ), 𝜎bk ∼ N(𝜇b, 0.5),

𝜖kij ∼ N(0, 𝜎𝜖k ), 𝜎𝜖k ∼ N(2, 0.5).

The fixed effect of group (𝛽2k) was set to zero for all metabolites to study type I error and it was either 2, 3, or 4 to study
power, where either 1/3 or a 2/3 of the metabolites in the pathway carried the effect of interest. Therefore, for a pathway
with three metabolites, either 1 (1/3) or 2 (2/3) metabolite(s) carried the group effect, and the group effect was zero for
the other metabolites. For simplicity, the fixed effect of time was set to 2. For high and low-correlation scenarios, 𝜎u was
set to 4 and 1 and 𝜇b was set to 4 and 2, respectively. In total, 244 scenarios were considered with 1000 repetitions for each
scenario.

5.1.2 Analysis of simulated data

SlaPMEG approach was adopted to analyze the data. The P-values of the global test at the second step were calculated
using 10 000 permutations, type I error and power were calculated by considering a P-value< .05 as significant. For com-
parison, simulated data were also analyzed based on a naive approach which ignores the potential correlation between
metabolites in a pathway and estimates the metabolite-specific random-effects based on separate LMMs per metabolite.
To test the group effect at a pathway level, we will perform a global test using all the random-effects estimated via the
LMMS for individual metabolite. Furthermore, we evaluated the performance of the pairwise approach with the same
data. As explained in Section 4, in this case, the potential correlation between all metabolites in a pathway is estimated via
the pairwise shared latent process models. Thus, to assess whether loss of efficiency is induced, we compared the standard
SLaPMEG, which applies the shared latent process on all metabolites simultaneously, with the pairwise approach in path-
ways of small/moderate size under high-/low-correlation scenarios. For the case of very large pathways (40 metabolites),
only the pairwise method and the naive method were applied.

5.1.3 Robustness and misspecification

We have studied the power of SLaPMEG to detect a difference in progression of the metabolites via additional simulations.
For this case, we have simulated data under a model with time-dependent group effect. So instead of 𝛽2 ⋅ groupi, we have
added 𝛽2 ⋅ tkij × groupi to (10). To make sure the results arise only from the slope effect, we set 𝛽1 = 0 and 𝛽2 was either 2,
3, or 4. The data are analyzed as before with one additional test. We adopted a variation of SLaPMEG, where in Step II only
the random slope is tested via the global test. This last variation is to test if the group-dependent trend is well captured
by the random slope via SLaPMEG framework. For simplicity, we have conducted these simulations under a moderate
correlation structure, where the variances parameters are set to the average of high- and low-correlation settings from
previous simulations.

Furthermore, to explore robustness to misspecification of the correlation structure, we simulated longitudinal metabo-
lites under independence and applied SLaPMEG. Thus, the data were simulated based on separate LMM’s from the model
above with the bki term removed. The same parameters were adopted and the results of the naive approach and SLaPMEG
were compared.
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F I G U R E 2 Simulation results—Colors represent the SLaPMEG (Green), separate LMM (Red), and pairwise (Blue) methods.
Correlation of the metabolites and subjects are both low for the plot on the left (A) and high for the plot on the right (B). All methods have
type I error rates close to 5%. SLaPMEG, shared latent process mixed effects modeling within global test [Colour figure can be viewed at
wileyonlinelibrary.com]

5.2 Simulation study results

Type I error. Both SLaPMEG and the naive method preserve the type I error close to nominal level (Figure 2). This is
true for all correlation structures. Low- and high-correlation structures are presented in Figure 2 and the other two inter-
mediate structures are presented in the Supplementary Figure 1. More specifically, SLaPMEG is slightly anticonservative
for testing a large pathway with large sample size and few time points.

Power. In general, SLaPMEG improves in power over the naive method, especially for small sample sizes (Figure 3).
Under low-correlation setting with large effect and sample size, both methods have high power to detect active pathways.
For small sample sizes, the naive method has very little power, this can be improved up to twofold using SLaPMEG. Under
the high-correlation setting and large sample size, both methods still have relatively high power, but the power of naive
method decreases in some conditions even up to 73%. With highly correlated metabolites and subjects, the power of SLaP-
MEG is up to seven times more than the naive method. Power plots for other conditions can be found in Supplementary
Figures 2 to 5.

Pairwise method. The type I error of the pairwise approach does not depend on the correlation structure and is
very close to the standard SLaPMEG. In case of a pathway of size 40, for which only pairwise modeling was efficient, the
type I error of the method is well preserved as is the case for the naive method. As for the power, the pairwise approach
closely resembles the full SLaPMEG under different scenarios. Even with pairwise fitting, SLaPMEG improves the power
up to two times in the low-correlation setting and up to seven times in the high-correlation setting for large pathways (40
metabolites).

Differential progression. SLaPMEG can detect the difference in progression of the longitudinal metabolites. In
fact, when only a time-dependent group effect is present the method has more power. Results for a small sample size
are presented in Figure 4, other results are presented in Supplementary Figure 6. For this set of simulations, we have
conducted two global tests in step II, one with all random effects, and one only with the random slope (specified in figure
with slope in parentheses). The second variation has an even higher power, hence random slope can sufficiently capture
the differential progression of longitudinal metabolites.

http://wileyonlinelibrary.com
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F I G U R E 3 Simulation results—Colors represent the SLaPMEG (Green), separate LMM (Red), and pairwise (Blue) methods. The plots
show a scenario with a small sample size (26) where only 1/3 of the metabolites are associated with the phenotype. Correlation of the
metabolites and subjects are both low for the plot on the left (A) and high for the plot on the right (B). Comparing the two plots, it is clear that
Sep. LMM has less power under the high-correlation scenario. The SLaPMEG model has more power in general and especially for a small
sample and/or effect sizes. A similar pattern holds for larger sample size (100) and pathways with more active genes (2/3). SLaPMEG, shared
latent process mixed effects modeling within global test [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 4 Simulation results—Colors represent the SLaPMEG (Blue) and pairwise (Green) methods. The bar with darker colors are
the results of Globaltest using all random effects, the lighter colors are the results of Globaltest using only the random slope. These plots show
a scenario with an small sample size (n = 26) where (A) 1/3 and (B) 2/3 of the Metabolites are associated with a time-dependent effect.
SLaPMEG method has sufficient power to detect differential progression and the pairwise method follows closely. A similar pattern holds for
larger sample size (n = 100). SLaPMEG, shared latent process mixed effects modeling within global test [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 5 Simulation results—Colors represent the SLaPMEG (Green) and separate LMM (Red) methods. The plot on the left (A)
shows type I error, and the plot on the right (B) shows power for a scenario with a small sample size (26) and 1/3 of the Metabolites in each
pathway are associated with the phenotype. For this plot the data are simulated according to separate LMM models. Type I error rate is
controlled even under misspecification of the correlation structure. Power follows a similar pattern to that of jointly simulated data.
SLaPMEG, shared latent process mixed effects modeling within global test [Colour figure can be viewed at wileyonlinelibrary.com]

Robustness to misspecification. The results of the SLaPMEG approach are robust to misspecification of the under-
lying correlation structure in the data. To show this, we performed the same procedure with a new dataset where the data
were generated from separate LMMs, hence assuming independence among metabolites. As depicted in Figure 5, type
I error is controlled, and our proposed method has more power in detecting active pathways compared with the naive
method. Results of power comparison with larger sample size and a larger proportion of active features are presented in
Supplementary Figure 6. It is worth noting that when the metabolites are independent, especially with larger pathways,
fitting a shared latent process is challenging simply because the shared effect is very small. SLaPMEG may encounter con-
vergence issues in such a case and thus the pairwise approach has been adopted instead. In our misspecified simulations
the joint model failed to converge about 14% of the time on average over different scenarios.

6 CASE STUDY

6.1 DMD study

We illustrate the application of SLaPMEG by analyzing data from a longitudinal experiment, designed to study disease
progression in a mouse model of DMD, briefly introduced in Section 1. In particular, 21 dystrophin-lacking (mdx) mice (5
mdx mice, 5 mdx utrn+/+, 6 mdx utrn+/-, and 5 mdx utrn-/- mice) and five WT mice were followed up in time and blood
samples were taken at five time points, that is, at 6, 12, 18, 24, and 30 weeks. Plasma samples were obtained in heparin
lithium tubes after fasting the mice for 4 to 6 hours. Details of the data acquisition along with comprehensive analysis
and results are reported separately in Reference 14.

For the illustration of our method, we will use here longitudinal data on 132 metabolites from two mice groups mdx
(21 mice) and WT (5 mice). Metabolites provide a close perspective on the biologic system’s response to mutations in the
DMD gene leading to lack of dystrophin. Our goal is to investigate the metabolic signature between mdx and WT groups.
To this end, we have considered 11 pathways from the Wikipathways database, as indicated in the first column of Table 1.
These pathways were selected as relevant according to the results of a previous study.14
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T A B L E 1 DMD study results—Testing association of the selected metabolic pathways and disease status based on SLaPMEG and
Naive methods

Pathway name
Pathway
size

LMM
conv.

Sep.
LMM SLaPMG

Alanine and aspartate metabolism 5 3 <0.001 0.036

Vitamin B12 metabolism 3 1 0.75 0.89

Transport of bile salts and organic acids, metal ions and amine compounds 5 1 0.65 0.43

Transport of inorganic cations/anions and amino acids/oligopeptides 5 2 0.005 0.34

Transport of vitamins, nucleosides, and related molecules 10 2 0.34 0.48a

Metabolism of polyamines 8 4 0.001 0.001

Histidine, lysine, phenylalanine, tyrosine, proline, and tryptophan catabolism 5 1 <0.001 0.019

Human metabolism overview 7 3 0.005 0.070

Biochemical pathways 55 15 0.302 0.042a

Urea cycle and metabolism of amino groups 12 5 <0.001 0.0.023a

Glucose homeostasis 13 7 0.54 0.29a

Abbreviations: DMD, Duchenne muscular dystrophy; SLaPMEG, shared latent process mixed effects modeling within global test.
aFor these pathways the joint SLaPMEG failed to converge and the P-values are calculated based on the pairwise approach.

The data were first scaled and then our proposed method, as discussed in Section 2 was fitted:

ykij = 𝛽0 + 𝛽1 ⋅ tkij + ui0 + ui1 ⋅ tkij + bki + 𝜖kij. (11)

The model includes a fixed effect of time (𝛽), a subject-specific random intercept ui0, a subject-specific random
slope ui1 and a number of metabolite-specific random terms bki depending on the size of the pathway. The size of the
pathways varies from 3 to 55. The estimation is based on the full model likelihood as described in Section 3 for small
or moderate-sized pathways. The pairwise solution is utilized for larger pathways (ie, >12 metabolites) or in case the
standard SLaPMEG failed to converge. As in the simulation, we also present results using the naive approach, which
models each longitudinal metabolite separately. For these individual LMMs, a similar design was adopted excluding the
metabolite-specific random terms. For both methods, P-values at the second stage were calculated using 10 000 permuta-
tions. The reported P-values have been adjusted for multiple testing across the 11 pathways using the Benjamini-Hochberg
procedure. Furthermore, we have explored the density plots of the estimated random-effects to gain more insight into the
nature of the pathway-level effects.

6.2 DMD study results

In our analysis, we found that six out of 11 metabolic pathways had a significantly different progression for mdx mice
compared with WT. The list of selected pathways along with the P-values are presented in the last column of Table 1. To fur-
ther investigate our findings, we explored the density plots of the estimated random-effects for Metabolism of Polyamines
pathway as shown in Figure 6. The creatine-specific random-effects for the WT mice are smaller than those for the mdx
mice (Figure 6B-top). Interestingly, this is confirmed by the spaghetti plot of creatine (Figure 6A-top). Conversely, the
estimated ornithine-specific random-effects are lower in mdx group than that of the WT group (Figure 6B-bottom), which
is also confirmed by the spaghetti plot for the ornithine progression over time Figure 6B-bottom. This implies that SLaP-
MEG can identify the heterogeneous effects of pathways. As shown by Table 1, the two methods select similar pathways.
Nevertheless, the results of the naive approach is not directly comparable to SLaPMEG. Fitting separate LMM for each
metabolite did not always converge. For these cases the global test in the second step was only based on a small portion
of metabolites for most pathways. The convergence rate within each pathway was 20% to 60%. A complete list of conver-
gence rates and P-values for the naive method are also presented in the third and fourth column of Table 1. For instance,
for the fourth raw, the Transport of inorganic cations/anions and amino acids pathway, there are five metabolites in the
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F I G U R E 6 DMD study results—A, Time course of two metabolites from metabolism of polyamines pathway with nine metabolites and
B, estimated bki values (metabolite-specific random-effects) for the corresponding metabolites. Colors represent the WT (blue) and mdx (red)
groups. The direction of effect is different for the two metabolites. Creatine values (Top) lie below the shared longitudinal trajectory in the
WT group compared with mdx. The opposite is true for the ornithine (Bottom) values. Despite the heterogeneity of effects, SLaPMEG
identified the differential expression of this pathway between two groups. DMD, Duchenne muscular dystrophy; SLaPMEG, shared latent
process mixed effects modeling within global test; WT, wild type [Colour figure can be viewed at wileyonlinelibrary.com]

pathway. The LMM convergence for this pathway is 2 (40%), meaning that we could fit an LMM for two of the metabolites
and the model did not converge for the other three metabolites. This consequently means that the P-value (.0039) is cal-
culated based on the random effects estimated based on only two metabolites. A reason for the failure of the separate
linear mixed models may be that the missingness rate was about 30%.

7 DISCUSSION

We have proposed a top-down approach to test whether a set of longitudinal metabolites in a pathway are associated with
a clinical outcome of interest. The strength of our approach is that it exploits all sources of correlation in the data levering
thereby the power of the test while remaining computationally efficient even for big pathway sizes. For small studies,
which are common in genomic research, SLaPMEG shows good power properties. Furthermore, we observed that the
random-effects can efficiently summarize the longitudinal metabolites. As stated in the results, a higher level of creatine
was observed in dmx mice which is expected as they do not metabolize creatine due to loss of muscle mass.15 On the other
hand, the direction of difference for ornithine was the opposite. Reduced levels of amino acids such as ornithine in dmx
mice are also in accordance with literature.16 These two amino acids are involved in the same differentially expressed
pathway. Based on this and evaluation of the density plots of the random-effects from other pathways, we can conclude
that SLaPMEG can detect pathways with heterogeneous differential effects. This may be partly due to the fact that the
global test can also detect heterogeneous differential effects.

We have built the pseudo-likelihood function using pairs of metabolites to provide a faster solution for large path-
ways. However, it should be noted that the pseudo-likelihood function in (9) could also be written in terms of triplets
instead of pairs of metabolites. This would involve fitting some additional models, and according to the simulations, does
not gain in term of power (results presented as Supplementary Figure 8). Note that these results are true when the data
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are generated from a multivariate normal distribution and may change when certain correlation structures are present in
the data. Moreover, optimizing the pseudo-likelihood instead of the joint likelihood ignores the correlations among esti-
mates. Despite this fact, according to the empirical evaluations in Section 5, it can sufficiently approximate the unknown
parameters of the joint model.

We have adopted a two-step procedure to avoid joint modeling of phenotype data and multiple longitudinal measures.
The two step procedure does not require complex estimation techniques and is frequently used to analyze time-to-even
data, for example, References 17-20. A disadvantage of these procedures is the potential bias in parameter estimates as
a consequence of ignoring the phenotypic information when modeling the latent process.18,20 Furthermore, the result
of the second step depends on the quality of the estimates in the first step. The model in (2) should capture the shared
latent trajectories of the data at hand. Therefore, it is recommended to perform formal model building and tests such
as likelihood ratio test to select the best fitting random effects structure. Linear progressions are rather simple and a
more elaborate structure may be more robust, for example, using polynomial or natural cubic splines depending on the
length of the follow-up. According to the simulations, SlaPMEG may lose power when the model does not appropriately
capture the longitudinal trend, specially when the sample size is low and the follow-up time is long (Supplementary
Figure 9).

Our proposed procedure can be extended in different ways. In the case study, we have considered balanced data
and a binary clinical outcome. However, the method can be successfully adopted for unbalanced datasets, with miss-
ing values and different types of outcomes including survival. In fact, the second step of our proposed method can be
easily replaced by a different linear model, with some minor adjustments. In addition, in theory, SLaPMEG is not lim-
ited to metabolites and can be used with other omics, for example, RNA-seq. To analyze such overdispersed count data,
instead of a linear model depending on normality, a generalized linear mixed model must be adopted in step I. This will
greatly complicate the estimation of the parameters in Equation (2), and is currently not possible based on the SLaPMEG
package. Nevertheless, the current method can be employed, as is, after normalizing the values or for example using
a method similar to Reference 21, where the mean-variance trend is estimated and incorporated into a linear model-
ing procedure. However, the effect of these procedures on power properties and type I error control needs to be further
studied.

In general, score tests are locally most powerful,11 suggesting that our proposed procedure is also more powerful in
detecting pathways that include many metabolites with small effect sizes. This is advantageous as the test is designed for
detecting pathways with many relevant features. Finally, note that SLaPMEG analyzes the pathways independently, in
case multiple pathways are of interest, the pathway-level P-values require multiple comparisons adjustments.
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