4 research outputs found

    Potential Role of Intensive Bird Growing during Outbreaks of Viral Zoonosis in Ukraine, Russian Federation, Kazakhstan and Belarus (on the Model Viruses Highly Pathogenic Influenza and Newcastle Diseases): Systematic Review

    Get PDF
    The paper highlights the impact of two cross-border poultry infections with zoonotic potential (avian flu and Newcastle disease) on the functioning of industrial poultry farms in the former Soviet Union counties (Ukraine, Russia, Belarus, Kazakhstan), where the poultry industry is fairly well-developed. Despite the permanent vaccination of poultry against Newcastle disease in industrial poultry farming, the disease still affects individual farms in Ukraine, the Russian Federation, and Kazakhstan. In case of outbreaks, the Russian Federation and Kazakhstan use inactivated influenza vaccines. In Ukraine, for almost 20 years, outbreaks of influenza have been confirmed mainly on individual farms, and one outbreak of highly pathogenic influenza was reported on an industrial poultry farm in 2020. In the Russian Federation, highly pathogenic influenza occurs on industrial poultry farms more often. In Russia, seven industrial poultry enterprises were affected by influenza in 2016-2017, and eight in 2018. Infection of poultry with influenza virus on poultry factory farms is an indication of shortcomings in compliance with biosecurity measures. Influenza and Newcastle disease are always likely to occur in the countries in question, as wild birds migrate through their territory, and they are a reservoir of pathogens, therefore outbreaks are often associated with spring and autumn migrations of wild birds. In all of said countries, a large number of poultry is kept by individual households, where basic biosecurity, sanitation and preventive vaccination measures are not applied. This component is often crucial in bringing viral infections such as influenza and Newcastle disease on large poultry farms. As a result, the virus is brought onto poultry farms by synanthropic birds, humans, transport, feed, etc

    Π ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠ° способу захисту Π±Π΅Ρ‚ΠΎΠ½Π½ΠΈΡ… ΠΏΡ–Π΄Π»ΠΎΠ³ Ρ‚Π²Π°Ρ€ΠΈΠ½Π½ΠΈΡ†ΡŒΠΊΠΈΡ… Π±ΡƒΠ΄Ρ–Π²Π΅Π»ΡŒ Π²Ρ–Π΄ ΠΊΠΎΡ€ΠΎΠ·Ρ–Ρ— Π·Π° Ρ€Π°Ρ…ΡƒΠ½ΠΎΠΊ використання сухих Π΄Π΅Π·Ρ–Π½Ρ„Ρ–ΠΊΡƒΡŽΡ‡ΠΈΡ… засобів

    Get PDF
    Concrete floors are most commonly used in animal housing. However, the specific environment of livestock buildings (moisture, urine, disinfectants) has a negative effect on concrete and leads to its corrosion. The influence of chemical and physical factors on concrete is reinforced by the development of microorganisms, which quickly adapt and use concrete as a living environment. To reduce the influence of an aggressive environment on the concrete floor, an experimental mixture of dry disinfectants was proposed. The components of the disinfection mixture have been selected taking into account the safety for animals and humans. The TPD-MS method was used to determine the change in the chemical composition of concrete. To study the microstructure of concrete, the method of scanning electron microscopy was used. Microbiological studies revealed bacteria A. Thiooxidans, S. aureus, E. coli, S. enteritidis, S. Π‘holeraesuis, C. Perfringen and micromycetes of the genus Cladosporium, Fusariums, Aspergillus, which contribute to the development of biological corrosion of concrete in livestock buildings. The fact of the negative impact of concentrated disinfectants on the structure of concrete was also established. As a result of the studies carried out, it was proved that a mixture of dry components for disinfection exhibits antimicrobial properties to varying degrees to the strains of field isolates of bacteria and fungi isolated in a pig-breeding farm. It was found that when using the proposed mixture of dry disinfectants in the research room of the pigsty, the relative humidity decreases by 38.5Β %; ammonia content – by 46.2Β %; hydrogen sulfide – by 57.8Β %; microbial bodies – by 74.7Β %, compared with the control room. It has been experimentally proven that the proposed mixture of dry disinfecting components has hygroscopic and antimicrobial properties and is promising for use in livestock farms.Π‘Π΅Ρ‚ΠΎΠ½Π½Ρ‹Π΅ ΠΏΠΎΠ»Ρ‹ Ρ‡Π°Ρ‰Π΅ всСго ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π² помСщСниях для содСрТания ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…. Однако спСцифичСская срСда ТивотноводчСских ΠΏΠΎΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΉ (Π²Π»Π°Π³Π°, ΠΌΠΎΡ‡Π°, Π΄Π΅Π·ΠΈΠ½Ρ„ΠΈΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ срСдства) ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ влияниС Π½Π° Π±Π΅Ρ‚ΠΎΠ½ ΠΈ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π΅Π³ΠΎ ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΈ. ВлияниС химичСских ΠΈ физичСских Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° Π±Π΅Ρ‚ΠΎΠ½ подкрСпляСтся Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ΠΌ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ быстро Π°Π΄Π°ΠΏΡ‚ΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ Π±Π΅Ρ‚ΠΎΠ½, ΠΊΠ°ΠΊ срСда для сущСствования. Для ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ влияния агрСссивной срСды Π½Π° Π±Π΅Ρ‚ΠΎΠ½Π½Ρ‹ΠΉ ΠΏΠΎΠ» Π±Ρ‹Π»Π° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ смСсь сухих Π΄Π΅Π·ΠΈΠ½Ρ„ΠΈΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… вСщСств ΠšΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ смСси для Π΄Π΅Π·ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Ρ€Π°Π½Ρ‹ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ бСзопасности для ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΈ людСй. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ TPD-MS опрСдСляли ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ химичСского состава Π±Π΅Ρ‚ΠΎΠ½Π°. Для исслСдования микроструктуры Π±Π΅Ρ‚ΠΎΠ½Π° примСняли ΠΌΠ΅Ρ‚ΠΎΠ΄ растровой элСктронной микроскопии. ΠœΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΈΠΌΠΈ исслСдованиями ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Ρ‹ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ A. Thiooxidans, S. aureus, E. coli, S. enteritidis, S. Π‘holeraesuis, C. Perfringen ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠΌΠΈΡ†Π΅Ρ‚ Ρ€ΠΎΠ΄Π° Cladosporium, Fusariums, Aspergillus, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΡƒΡŽΡ‚ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ биологичСской ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΈ Π±Π΅Ρ‚ΠΎΠ½Π° Π² ТивотноводчСских помСщСниях. Π’Π°ΠΊΠΆΠ΅ установлСн Ρ„Π°ΠΊΡ‚ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ воздСйствия ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π΄Π΅Π·ΠΈΠ½Ρ„ΠΈΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… срСдств Π½Π° структуру Π±Π΅Ρ‚ΠΎΠ½Π°. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… исслСдований Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ смСсь сухих ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² для Π΄Π΅Π·ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ проявляСт ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹Π΅ свойства Π² Ρ€Π°Π·Π½ΠΎΠΉ стСпСни ΠΊ Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΌ Π² свиноводчСском хозяйствС ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² ΠΏΠΎΠ»Π΅Π²Ρ‹Ρ… изолятов Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ ΠΈ Π³Ρ€ΠΈΠ±ΠΎΠ². УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ смСси сухих Π΄Π΅Π·ΠΈΠ½Ρ„ΠΈΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Π² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΡΠΊΠΎΠΌ ΠΏΠΎΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΈ свинарника ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π²Π»Π°ΠΆΠ½ΠΎΡΡ‚ΡŒ Π½Π° 38,5 %; содСрТаниС Π°ΠΌΠΌΠΈΠ°ΠΊΠ° – Π½Π° 46,2 %; сСроводорода – Π½Π° 57,8 %; ΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹Ρ… Ρ‚Π΅Π» – Π½Π° 74,7 %, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ ΠΏΠΎΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ΠΌ. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ прСдлоТСнная смСсь сухих Π΄Π΅Π·ΠΈΠ½Ρ„ΠΈΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² ΠΈΠΌΠ΅Π΅Ρ‚ гигроскопичСскиС ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹Π΅ свойства ΠΈ являСтся пСрспСктивным для использования Π² условиях ТивотноводчСских Ρ„Π΅Ρ€ΠΌΠ‘Π΅Ρ‚ΠΎΠ½Π½Ρ– ΠΏΡ–Π΄Π»ΠΎΠ³ΠΈ Π½Π°ΠΉΡ‡Π°ΡΡ‚Ρ–ΡˆΠ΅ Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‚ΡŒΡΡ Ρƒ приміщСннях для утримання Ρ‚Π²Π°Ρ€ΠΈΠ½. Однак спСцифічнС сСрСдовищС Ρ‚Π²Π°Ρ€ΠΈΠ½Π½ΠΈΡ†ΡŒΠΊΠΈΡ… ΠΏΡ€ΠΈΠΌΡ–Ρ‰Π΅Π½ΡŒ (Π²ΠΎΠ»ΠΎΠ³Π°, сСча, Π΄Π΅Π·Ρ–Π½Ρ„Ρ–ΠΊΡƒΡŽΡ‡Ρ– засоби) ΠΌΠ°Ρ” Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΈΠΉ Π²ΠΏΠ»ΠΈΠ² Π½Π° Π±Π΅Ρ‚ΠΎΠ½ Ρ‚Π° ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ ΠΉΠΎΠ³ΠΎ ΠΊΠΎΡ€ΠΎΠ·Ρ–Ρ—. Π’ΠΏΠ»ΠΈΠ² Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΡ… Ρ‚Π° Ρ„Ρ–Π·ΠΈΡ‡Π½ΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ–Π² Π½Π° Π±Π΅Ρ‚ΠΎΠ½ ΠΏΡ–Π΄ΠΊΡ€Ρ–ΠΏΠ»ΡŽΡ”Ρ‚ΡŒΡΡ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΠΎΠΌ ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π², які швидко Π°Π΄Π°ΠΏΡ‚ΡƒΡŽΡ‚ΡŒΡΡ Ρ‚Π° Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‚ΡŒ Π±Π΅Ρ‚ΠΎΠ½, як сСрСдовищС для існування.  Для змСншСння Π²ΠΏΠ»ΠΈΠ²Ρƒ агрСсивного сСрСдовища Π½Π° Π±Π΅Ρ‚ΠΎΠ½Π½Ρƒ ΠΏΡ–Π΄Π»ΠΎΠ³Ρƒ Π±ΡƒΠ»Π° Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½Π° Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π° ΡΡƒΠΌΡ–Ρˆ сухих Π΄Π΅Π·Ρ–Π½Ρ„Ρ–ΠΊΡƒΡŽΡ‡ΠΈΡ… Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ ΠΏΡ–Π΄Ρ–Π±Ρ€Π°Π½ΠΈΡ… Π· урахуванням синСргСтичної Π΄Ρ–Ρ—. ΠšΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΈ ΡΡƒΠΌΡ–ΡˆΡ– для Π΄Π΅Π·Ρ–Π½Ρ„Π΅ΠΊΡ†Ρ–Ρ— Π²Ρ–Π΄Π½ΠΎΡΡΡ‚ΡŒΡΡ Π΄ΠΎ малотоксичних Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ Ρ– ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΠ²Π°Ρ‚ΠΈΡΡŒ Π² присутності Ρ‚Π²Π°Ρ€ΠΈΠ½ Ρ– людСй. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ TPD-MS Π²ΠΈΠ·Π½Π°Ρ‡Π°Π»ΠΈ Π·ΠΌΡ–Π½Ρƒ Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΎΠ³ΠΎ складу Π±Π΅Ρ‚ΠΎΠ½Ρƒ. Для дослідТСння мікроструктури Π±Π΅Ρ‚ΠΎΠ½Ρƒ застосовували ΠΌΠ΅Ρ‚ΠΎΠ΄ растрової Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΡ— мікроскопії. ΠœΡ–ΠΊΡ€ΠΎΠ±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΌΠΈ дослідТСннями виявлСні Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–Ρ— A. Thiooxidans, S. aureus, E. coli, S. enteritidis, S. Π‘holeraesuis, C. Perfringen Ρ‚Π° ΠΌΡ–ΠΊΡ€ΠΎΠΌΡ–Ρ†Π΅Ρ‚ΠΈ Ρ€ΠΎΠ΄Ρƒ Cladosporium, Fusariums, Aspergillus, які ΡΠΏΡ€ΠΈΡΡŽΡ‚ΡŒ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ–ΠΉ ΠΊΠΎΡ€ΠΎΠ·Ρ–Ρ— Π±Π΅Ρ‚ΠΎΠ½Ρƒ Ρƒ Ρ‚Π²Π°Ρ€ΠΈΠ½Π½ΠΈΡ†ΡŒΠΊΠΈΡ… приміщСннях. Π’Π°ΠΊΠΎΠΆ встановлСний Ρ„Π°ΠΊΡ‚ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ²Π°Π½ΠΈΡ… Π΄Π΅Π·Ρ–Π½Ρ„Ρ–ΠΊΡƒΡŽΡ‡ΠΈΡ… засобів Π½Π° структуру Π±Π΅Ρ‚ΠΎΠ½Ρƒ. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ– ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Π΄ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ, Ρ‰ΠΎ ΡΡƒΠΌΡ–Ρˆ сухих ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ–Π² для Π΄Π΅Π·Ρ–Π½Ρ„Π΅ΠΊΡ†Ρ–Ρ— проявляє ΠΏΡ€ΠΎΡ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Ρ– властивості Π² Ρ€Ρ–Π·Π½ΠΎΠΌΡƒ ступСні Π΄ΠΎ Π²ΠΈΠ΄Ρ–Π»Π΅Π½ΠΈΡ… Ρƒ ΡΠ²ΠΈΠ½Π°Ρ€ΡΡŒΠΊΠΎΠΌΡƒ господарстві ΡˆΡ‚Π°ΠΌΡ–Π² ΠΏΠΎΠ»ΡŒΠΎΠ²ΠΈΡ… ізолятів Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–ΠΉ Ρ‚Π° Π³Ρ€ΠΈΠ±Ρ–Π². ВстановлСно, Ρ‰ΠΎ ΠΏΡ€ΠΈ застосуванні Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎΡ— ΡΡƒΠΌΡ–ΡˆΡ– сухих Π΄Π΅Π·Ρ–Π½Ρ„Ρ–ΠΊΡƒΡŽΡ‡ΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ–Π² Ρƒ дослідному ΠΏΡ€ΠΈΠΌΡ–Ρ‰Π΅Π½Π½Ρ– свинарника Π·ΠΌΠ΅Π½ΡˆΡƒΡ”Ρ‚ΡŒΡΡ відносна Π²ΠΎΠ»ΠΎΠ³Ρ–ΡΡ‚ΡŒ Π½Π° 38,5 %; вміст Π°ΠΌΠΎΠ½Ρ–Π°ΠΊΡƒ – Π½Π° 46,2 %; ΡΡ–Ρ€ΠΊΠΎΠ²ΠΎΠ΄Π½ΡŽ – Π½Π° 57,8 %; ΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΈΡ… Ρ‚Ρ–Π» – Π½Π° 74,7 %, порівняно Π΄ΠΎ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ приміщСння. Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ Π΄ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ, Ρ‰ΠΎ Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½Π° ΡΡƒΠΌΡ–Ρˆ сухих Π΄Π΅Π·Ρ–Π½Ρ„Ρ–ΠΊΡƒΡŽΡ‡ΠΈΡ… Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ ΠΌΠ°Ρ” гігроскопічні Ρ‚Π° ΠΏΡ€ΠΎΡ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Ρ– властивості Ρ– Ρ” пСрспСктивним для використання Π² ΡƒΠΌΠΎΠ²Π°Ρ… Ρ‚Π²Π°Ρ€ΠΈΠ½Π½ΠΈΡ†ΡŒΠΊΠΈΡ… Ρ„Π΅Ρ€

    Genotyping of pathogenic leptospira by Multiple Locus Variable-number Tandem Repeat Analysis (MLVA)

    Get PDF
    ObjectiveTo introduce the method of molecular genotyping (MLVA) to determine the genotype of field isolates of leptospira.IntroductionLeptospirosis (ictherohemoglobinuria, Leptospirosis biliousness) is a natural focal and zoonotic infectious disease dangerous for humans and farm animals. It is important to identify specific leptospira strains isolated from rodents or sick and suspicious animals by the serotype or genotype. In comparison with serotyping using micro agglutination test (MAT), molecular genotyping makes it possible to accurately identify a specific pathogen strain. The genetic classification now becomes more significant than the phenotypic classification.MethodsSpecific oligonucleotide primers, which flank fragments of the genome locus of pathogenic leptospira varies in terms of the number of tandem repeats VNTR-4, -7, -10 specific for L.interrogans, L.kirschneri, and L.borgpetersenii were used. The amplification products were detected using agar gel electrophoresis with the following identification of the fragment length with a molecular weight marker and comparison with the collection of VNTR profiles of the strains described in the literature.ResultsIt was established that the method of leptospira molecular genotyping by determining the number of variable tandem repeats of a locus (VNTR-variable number tandem repeats analysis) is suitable for molecular epizootology studies in Ukraine. The advantages of the method are the simplicity of performance and availability for diagnostic and research laboratories in Ukraine compared to other pathogen genome sequencing based genotyping methods, in particular Multilocus sequence typing (MLST) or Multispacer Sequence Typing (MST), which require complex equipment and operating conditions. The reference strain of Leptospira M20 serotype Copengageni serogroup Icterohaemorrhagiae from the NAAS IVM collection of was studied and its VNTR profile was identified with the genotype of the strain Fiocruz L1-130 that is described in the literature as a serotype of Copengageni serogroup Icterohaemorrhagiae. The genotype of the leptospira field isolate obtained from a rat in Lviv Oblast of Ukraine was specified and its identity was established in the aforementioned genotype. The obtained data support the prospects of using MLVA genotyping method to study the distribution of different genotypes of leptospira. The research will continue to study the specificities of molecular epizootology of leptospirosis in Ukraine.ConclusionsThe method of leptospira molecular genotyping by multilocus analysis of the number of variable tandem repeats has been tested in the Leptospirosis Research Laboratory in collaboration with the Museum of Microorganisms at the National Academy of Sciences, the Ukraine Institute of Veterinary Medicine, the ELISA and PCR Research Laboratory, and the Bila Tserkva National Agrarian University. The genotype of the reference strain has been correlated with its serological profile; identification of the genotype of the field isolate pathogenic leptospira has been completed. The tested method is planned to be implemented in surveillance and control over leptospirosis spreading in Ukraine, and aimed to help in development and improvement of leptospirosis vaccine formulations. Additionally, method of Multiple-Locus Variable number tandem repeat Analysis will be used for molecular epidemiology research in Ukraine.ReferencesSalaΓΌn L, MΓ©rien F, Gurianova S, Baranton G, Picardeau M. Application of multilocus variable-number tandem-repeat analysis for molecular typing of the agent of leptospirosis. J Clin Microbiol. 2006;44(11):3954-3962. doi:10.1128/JCM.00336-06.Caimi K, Repetto SA, Varni V, Ruybal P. Infection , Genetics and Evolution Leptospira species molecular epidemiology in the genomic era. Infect Genet Evol. 2017;54(July):478-485. doi:10.1016/j.meegid.2017.08.013.Ayral F, Zilber AL, Bicout DJ, Kodjo A, Artois M, Djelouadji Z. Distribution of leptospira interrogans by multispacer sequence typing in urban Norway rats (Rattus norvegicus): A survey in France in 2011-2013. PLoS One. 2015;10(10):1-14. doi:10.1371/journal.pone.0139604

    Development of A Method of Protection of Concrete Floors of Animal Buildings From Corrosion at the Expense of Using Dry Disinfectants

    Full text link
    Concrete floors are most commonly used in animal housing. However, the specific environment of livestock buildings (moisture, urine, disinfectants) has a negative effect on concrete and leads to its corrosion. The influence of chemical and physical factors on concrete is reinforced by the development of microorganisms, which quickly adapt and use concrete as a living environment. To reduce the influence of an aggressive environment on the concrete floor, an experimental mixture of dry disinfectants was proposed. The components of the disinfection mixture have been selected taking into account the safety for animals and humans. The TPD-MS method was used to determine the change in the chemical composition of concrete. To study the microstructure of concrete, the method of scanning electron microscopy was used. Microbiological studies revealed bacteria A. Thiooxidans, S. aureus, E. coli, S. enteritidis, S. Π‘holeraesuis, C. Perfringen and micromycetes of the genus Cladosporium, Fusariums, Aspergillus, which contribute to the development of biological corrosion of concrete in livestock buildings. The fact of the negative impact of concentrated disinfectants on the structure of concrete was also established. As a result of the studies carried out, it was proved that a mixture of dry components for disinfection exhibits antimicrobial properties to varying degrees to the strains of field isolates of bacteria and fungi isolated in a pig-breeding farm. It was found that when using the proposed mixture of dry disinfectants in the research room of the pigsty, the relative humidity decreases by 38.5 %; ammonia content – by 46.2 %; hydrogen sulfide – by 57.8 %; microbial bodies – by 74.7 %, compared with the control room. It has been experimentally proven that the proposed mixture of dry disinfecting components has hygroscopic and antimicrobial properties and is promising for use in livestock farms
    corecore