43 research outputs found
Algebraic functor slices
AbstractForgetful functors of any two categories of monadic algebras over Letfor which the functor T in a monad T = (T, η, μ) is not naturally equivalent to the identity or a constant functor or to their coproduct are slice equivalent to one another. In particular, any two forgetful functors of nondegenerate varieties of algebras (that is, varieties which possess a term which is neither a projection nor a constant) are slice equivalent
Interaction and observation: categorical semantics of reactive systems trough dialgebras
We use dialgebras, generalising both algebras and coalgebras, as a complement
of the standard coalgebraic framework, aimed at describing the semantics of an
interactive system by the means of reaction rules. In this model, interaction
is built-in, and semantic equivalence arises from it, instead of being
determined by a (possibly difficult) understanding of the side effects of a
component in isolation. Behavioural equivalence in dialgebras is determined by
how a given process interacts with the others, and the obtained observations.
We develop a technique to inter-define categories of dialgebras of different
functors, that in particular permits us to compare a standard coalgebraic
semantics and its dialgebraic counterpart. We exemplify the framework using the
CCS and the pi-calculus. Remarkably, the dialgebra giving semantics to the
pi-calculus does not require the use of presheaf categories
Coalgebra learning via duality
Automata learning is a popular technique for inferring minimal automata through membership and equivalence queries. In this paper, we generalise learning to the theory of coalgebras. The approach relies on the use of logical formulas as tests, based on a dual adjunction between states and logical theories. This allows us to learn, e.g., labelled transition systems, using Hennessy-Milner logic. Our main contribution is an abstract learning algorithm, together with a proof of correctness and termination