1,488 research outputs found
Wide field imaging of distant clusters
Wide field imaging is key to understanding the build-up of distant clusters
and their galaxy population. By focusing on the so far unexplored outskirts of
clusters, where infalling galaxies first hit the cluster potential and the hot
intracluster medium, we can help separate cosmological field galaxy evolution
from that driven by environment. I present a selection of recent advancements
in this area, with particular emphasis on Hubble Space Telescope wide field
imaging, for its superior capability to deliver galaxy morphologies and precise
shear maps of distant clusters.Comment: Invited contribution. To appear in "Outskirts of galaxy clusters:
intense life in the suburbs", A. Diaferio et al. eds. 7 pages, 5 figures.
Refereed versio
The Structure & Dynamics of Massive Early-type Galaxies: On Homology, Isothermality and Isotropy inside one Effective Radius
Based on 58 SLACS strong-lens early-type galaxies with direct total-mass and
stellar-velocity dispersion measurements, we find that inside one effective
radius massive elliptical galaxies with M_eff >= 3x10^10 M_sun are
well-approximated by a power-law ellipsoid with an average logaritmic density
slope of = -dlog(rho_tot)/dlog(r)=2.085^{+0.025}_{-0.018} (random
error on mean) for isotropic orbits with beta_r=0, +-0.1 (syst.) and
sigma_gamma' <= 0.20^{+0.04}_{-0.02} intrinsic scatter (all errors indicate the
68 percent CL). We find no correlation of gamma'_LD with galaxy mass (M_eff),
rescaled radius (i.e. R_einst/R_eff) or redshift, despite intrinsic differences
in density-slope between galaxies. Based on scaling relations, the average
logarithmic density slope can be derived in an alternative manner, fully
independent from dynamics, yielding =1.959 +- 0.077. Agreement
between the two values is reached for =0.45 +- 0.25, consistent with
mild radial anisotropy. This agreement supports the robustness of our results,
despite the increase in mass-to-light ratio with total galaxy mass: M_eff ~
L_{V,eff}^(1.363+-0.056). We conclude that massive early-type galaxies are
structurally close-to homologous with close-to isothermal total density
profiles (<=10 percent intrinsic scatter) and have at most some mild radial
anisotropy. Our results provide new observational limits on galaxy formation
and evolution scenarios, covering four Gyr look-back time.Comment: Accepted for publication by ApJL; 4 pages, 2 figure
The Sloan Lens ACS Survey. IX. Colors, Lensing and Stellar Masses of Early-type Galaxies
We present the current photometric dataset for the Sloan Lens ACS (SLACS)
Survey, including HST photometry from ACS, WFPC2, and NICMOS. These data have
enabled the confirmation of an additional 15 grade `A' (certain) lens systems,
bringing the number of SLACS grade `A' lenses to 85; including 13 grade `B'
(likely) systems, SLACS has identified nearly 100 lenses and lens candidates.
Approximately 80% of the grade `A' systems have elliptical morphologies while
~10% show spiral structure; the remaining lenses have lenticular morphologies.
Spectroscopic redshifts for the lens and source are available for every system,
making SLACS the largest homogeneous dataset of galaxy-scale lenses to date. We
have developed a novel Bayesian stellar population analysis code to determine
robust stellar masses with accurate error estimates. We apply this code to
deep, high-resolution HST imaging and determine stellar masses with typical
statistical errors of 0.1 dex; we find that these stellar masses are unbiased
compared to estimates obtained using SDSS photometry, provided that informative
priors are used. The stellar masses range from 10^10.5 to 10^11.8 M and
the typical stellar mass fraction within the Einstein radius is 0.4, assuming a
Chabrier IMF. The ensemble properties of the SLACS lens galaxies, e.g. stellar
masses and projected ellipticities, appear to be indistinguishable from other
SDSS galaxies with similar stellar velocity dispersions. This further supports
that SLACS lenses are representative of the overall population of massive
early-type galaxies with M* >~ 10^11 M, and are therefore an ideal
dataset to investigate the kpc-scale distribution of luminous and dark matter
in galaxies out to z ~ 0.5.Comment: 20 pages, 18 figures, 5 tables, published in Ap
Environmental Effects in the Evolution of Galactic Bulges
We investigate possible environmental trends in the evolution of galactic
bulges over the redshift range 0<z<0.6. For this purpose, we construct the
Fundamental Plane (FP) for cluster and field samples at redshifts =0.4 and
=0.54 using surface photometry based on HST imaging and velocity dispersions
based on Keck spectroscopy. As a reference point for our study we include data
for pure ellipticals, which we model as single-component Sersic profiles;
whereas for multi-component galaxies we undertake decompositions using Sersic
and exponential models for the bulge and disk respectively. Although the FP for
both distant cluster and field samples are offset from the local relation,
consistent with evolutionary trends found in earlier studies, we detect
significant differences in the zero point of ~=0.2 dex between the field and
cluster samples at a given redshift. For both clusters, the
environmentally-dependent offset is in the sense expected for an accelerated
evolution of bulges in dense environments. By matching the mass range of our
samples, we confirm that this difference does not arise as a result of the
mass-dependent downsizing effects seen in larger field samples. Our result is
also consistent with the hypothesis that - at fixed mass and environment - the
star formation histories of galactic bulges and pure spheroids are
indistinguishable, and difficult to reconcile with the picture whereby the
majority of large bulges form primarily via secular processes within spiral
galaxies.Comment: 5 pages, 3 figures, accepted for publication in ApJ Letter
The Cosmic Evolution of Faint Satellite Galaxies as a Test of Galaxy Formation and the Nature of Dark Matter
The standard cosmological model based on cold dark matter (CDM) predicts a
large number of subhalos for each galaxy-size halo. It is well known that
matching the subhalos to the observed properties of luminous satellites of
galaxies in the local universe poses a significant challenge to our
understanding of the astrophysics of galaxy formation. We show that the cosmic
evolution and host mass dependence of the luminosity function of satellites
provides a powerful new diagnostic to disentangle astrophysical effects from
variations in the underlying dark matter mass function. We illustrate this by
comparing the results of recent observations of satellites out to based
on Hubble Space Telescope images with the predictions of three different sets
of state-of-the art semi-analytic models with underlying CDM power spectra and
one semi-analytic model with an underlying Warm Dark Matter (WDM) power
spectrum. We find that even though CDM models provide a reasonable fit to the
local luminosity function of satellites around galaxies comparable or slightly
larger than the Milky Way, they do not reproduce the data as well for different
redshift and host galaxy stellar mass. This tension indicates that further
improvements are likely to be needed in the description of star formation if
the models are to be reconciled with the data. The WDM model matches the
observed mass dependence and redshift evolution of satellite galaxies more
closely than any of the CDM models, indicating that a modification of the
underlying power spectrum may offer an alternative solution to this tension. We
conclude by presenting predictions for the color magnitude relation of
satellite galaxies to demonstrate how future observations will be able to
further distinguish between these models and help constrain baryonic and
non-baryonic physics.Comment: Accepted for publication in ApJ, revised to incorporate referee
comment
"Refsdal" meets Popper: comparing predictions of the re-appearance of the multiply imaged supernova behind MACSJ1149.5+2223
Supernova "Refsdal," multiply imaged by cluster MACS1149.5+2223, represents a rare opportunity to make a true blind test of model predictions in extragalactic astronomy, on a timescale that is short compared to a human lifetime. In order to take advantage of this event, we produced seven gravitational lens models with five independent methods, based on Hubble Space Telescope (HST) Hubble Frontier Field images, along with extensive spectroscopic follow-up observations by HST, the Very Large and the Keck Telescopes. We compare the model predictions and show that they agree reasonably well with the measured time delays and magnification ratios between the known images, even though these quantities were not used as input. This agreement is encouraging, considering that the models only provide statistical uncertainties, and do not include additional sources of uncertainties such as structure along the line of sight, cosmology, and the mass sheet degeneracy. We then present the model predictions for the other appearances of supernova "Refsdal." A future image will reach its peak in the first half of 2016, while another image appeared between 1994 and 2004. The past image would have been too faint to be detected in existing archival images. The future image should be approximately one-third as bright as the brightest known image (i.e., H_(AB) ≈ 25.7 mag at peak and H_(AB) ≈ 26.7 mag six months before peak), and thus detectable in single-orbit HST images. We will find out soon whether our predictions are correct
Can dry merging explain the size evolution of early-type galaxies?
The characteristic size of early-type galaxies (ETGs) of given stellar mass
is observed to increase significantly with cosmic time, from redshift z>2 to
the present. A popular explanation for this size evolution is that ETGs grow
through dissipationless ("dry") mergers, thus becoming less compact. Combining
N-body simulations with up-to-date scaling relations of local ETGs, we show
that such an explanation is problematic, because dry mergers do not decrease
the galaxy stellar-mass surface-density enough to explain the observed size
evolution, and also introduce substantial scatter in the scaling relations.
Based on our set of simulations, we estimate that major and minor dry mergers
increase half-light radius and projected velocity dispersion with stellar mass
(M) as M^(1.09+/-0.29) and M^(0.07+/-0.11), respectively. This implies that: 1)
if the high-z ETGs are indeed as dense as estimated, they cannot evolve into
present-day ETGs via dry mergers; 2) present-day ETGs cannot have assembled
more than ~45% of their stellar mass via dry mergers. Alternatively, dry
mergers could be reconciled with the observations if there was extreme fine
tuning between merger history and galaxy properties, at variance with our
assumptions. Full cosmological simulations will be needed to evaluate whether
this fine-tuned solution is acceptable.Comment: 5 pages, 2 figures. Accepted for publication in ApJ Letter
- …