746 research outputs found

    Exploitation of the marine ecosystem in the sub-Antarctic: historical impacts and current consequences - Corrigendum

    Get PDF
    Since the publication of Trathan & Reid (2009), it has come to my attention that in preparing the opening sections of the manuscript I inadvertently omitted an important citation to work by K-H. Kock (2000) that was of great assistance. In recognition of this, I consider that it is important and appropriate to correct this oversight by highlighting this earlier piece of wor

    Transcriptome of the dead: characterisation of immune genes and marker development from necropsy samples in a free-ranging marine mammal

    Get PDF
    Background Transcriptomes are powerful resources, providing a window on the expressed portion of the genome that can be generated rapidly and at low cost for virtually any organism. However, because many genes have tissue-specific expression patterns, developing a complete transcriptome usually requires a 'discovery pool' of individuals to be sacrificed in order to harvest mRNA from as many different types of tissue as possible. This hinders transcriptome development in large, charismatic and endangered species, many of which stand the most to gain from such approaches. To circumvent this problem in a model pinniped species, we 454 sequenced cDNA from testis, heart, spleen, intestine, kidney and lung tissues obtained from nine adult male Antarctic fur seals (Arctocephalus gazella) that died of natural causes at Bird Island, South Georgia. Results After applying stringent quality control criteria based on length and annotation, we obtained 12,397 contigs which, in combination with 454 data previously obtained from skin, gave a total of 23,096 unique contigs. Homology was found to 77.0% of dog (Canis lupus familiaris) transcripts, suggesting that the combined assembly represents a substantial proportion of this species' transcriptome. Moreover, only 0.5% of transcripts revealed sequence similarity to bacteria, implying minimal contamination, and the percentage of transcripts involved in cell death was low at 2.6%. Transcripts with immune-related annotations were almost five-fold enriched relative to skin and represented 13.2% of all spleen-specific contigs. By reference to the dog, we also identified transcripts revealing homology to five class I, ten class II and three class III genes of the Major Histocompatibility Complex and derived the putative genomic distribution of 17,121 contigs, 2,119 in silico mined microsatellites and 9,382 single nucleotide polymorphisms. Conclusions Our findings suggest that transcriptome development based on samples collected post mortem may greatly facilitate genomic studies, not only of marine mammals but also more generally of species that are of conservation concern

    Linking extreme interannual changes in prey availability to foraging behaviour and breeding investment in a marine predator, the macaroni penguin

    Get PDF
    Understanding the mechanisms that link prey availability to predator behaviour and population change is central to projecting how a species may respond to future environmental pressures. We documented the behavioural responses and breeding investment of macaroni penguins Eudyptes chrysolophus across five breeding seasons where local prey density changed by five-fold; from very low to highly abundant. When prey availability was low, foraging trips were significantly longer and extended overnight. Birds also foraged farther from the colony, potentially in order to reach more distant foraging grounds and allow for increased search times. These extended foraging trips were also linked to a marked decrease in fledgling weights, most likely associated with reduced rates of provisioning. Furthermore, by comparing our results with previous work on this population, it appears that lowered first-year survival rates associated, at least partially, with fledging masses were also evident for this cohort. This study integrates a unique set of prey density, predator behaviour and predator breeding investment data to highlight a possible behavioural mechanism linking perturbations in prey availability to population demography

    Aplikasi Teknologi Bioengineering Jebakan Sedimen di Sub DAS Citanduy Hulu

    Full text link
    Citanduy watershed has been classified as a critical watershed in West Java. Sedimentation load at Citanduy watershed reach 5 milion cubic meters/years. It is indicated that lagoon area “Segara Anakan” was decreased about 823 hectars. Land use changes for cultivation area at Citanduy upland causes acceleration land degradation. Various efforts of the civil engineering and vegetative approach have been applied to control erosion and sedimentation. Alternative technology for controlling soil erosion and sedimentation is the application of sediment trap bioengineering. It is application on micro catchment area, environment-friendly, and easily adapted for the farmers community. The main for material of bioengineering sediment trap is made of Bamboo. Results of design that is applied in the critical area at Bukit Bitung up land (Citaduy upland) Kecamatan Tambaksari, Ciamis Region, measuring the width between 100 cm to 150 cm, whereas the height are between 80 cm to 100 cm. The application of this technology is effective sediment traps for micro catcment area of <5 hectars. Therefore for a broad cachment area more sediment traps are required. In a period of not more than 1.5 month, the sediment trap has been able to capture sediments up to 1 m3 per unit. The performance of sediment traps bioengineering also shown that bamboo as main components has grown up to not more than 30 days. The trapped sediments were restored back to the land for agricultural purposes after being add by agricultural waste. Sediments that have been processed at the same time also functions as soil amelioration or soil improvement

    Krill-feeding behaviour in a chinstrap penguin compared to fish-eating in Magellanic penguins: a pilot study.

    Get PDF
    Inferring feeding activities from undulations in diving depth profiles is widespread in studies of foraging marine predators. This idea, however, has rarely been tested because of practical difficulties in obtaining an independent estimate of feeding activities at a time scale corresponding to depth changes within a dive. In this study we attempted to relate depth profile undulations and feeding activities during diving in a single Chinstrap Penguin Pygoscelis antarctica, by simultaneously using a conventional time-depth recorder and a recently developed beak-angle sensor. Although failure in device attachments meant that data were obtained successfully from just a part of a single foraging trip, our preliminary results show a linear relationship between the number of depth wiggles and the number of underwater beakopening events during a dive, suggesting that the relative feeding intensity of each dive could be represented by depth-profile data. Underwater beak-opening patterns of this krill-feeding penguin species are compared with recent data from three fish- and squid-feeding Magellanic Penguins Spheniscus magellanicus

    Long term movements and activity patterns of an Antarctic marine apex predator: the Leopard Seal

    Get PDF
    Leopard seals are an important Antarctic apex predator that can affect marine ecosystems through local predation. Here we report on the successful use of micro geolocation logging sensor tags to track the movements, and activity, of four leopard seals for trips of between 142–446 days including one individual in two separate years. Whilst the sample size is small the results represent an advance in our limited knowledge of leopard seals. We show the longest periods of tracking of leopard seals’ migratory behaviour between the pack ice, close to the Antarctic continent, and the sub-Antarctic island of South Georgia. It appears that these tracked animals migrate in a directed manner towards Bird Island and, during their residency, use this as a central place for foraging trips as well as exploiting the local penguin and seal populations. Movements to the South Orkney Islands were also recorded, similar to those observed in other predators in the region including the krill fishery. Analysis of habitat associations, taking into account location errors, indicated the tracked seals had an affinity for shallow shelf water and regions of sea ice. Wet and dry sensors revealed that seals hauled out for between 22 and 31% of the time with maximum of 74 hours and a median of between 9 and 11 hours. The longest period a seal remained in the water was between 13 and 25 days. Fitting GAMMs showed that haul out rates changed throughout the year with the highest values occurring during the summer which has implications for visual surveys. Peak haul out occurred around midday for the months between October and April but was more evenly spread across the day between May and September. The seals’ movements between, and behaviour within, areas important to breeding populations of birds and other seals, coupled with the dynamics of the region’s fisheries, shows an understanding of leopard seal ecology is vital in the management of the Southern Ocean resources

    Multi-scale assessment of distribution and density of procellariiform seabirds within the Northern Antarctic Peninsula marine ecosystem

    Get PDF
    The Antarctic Peninsula is one of the most rapidly warming regions on earth, and it is likely that the abundance and distribution of marine predators will change as a result.Procellariiform seabirds are highly mobile predators, which target specific habitat characteristics associated with underlying distributions of prey and areas of increased prey availability. We use ship surveys and hurdle models, to estimate the summer distribution and relative density of 11 seabird species within the northern Antarctic Peninsula marine ecosystem. Models differed among species; however, sea surface temperature and depth were frequently associated with seabird occurrence and had the greatest explanatory power across many species. Null models based on observation data were better at predicting seabird density than models that included environmental covariates. This suggests that the main driver of distribution patterns is the broad-scale habitat features, and fine-scale aggregations within these ranges are harder to predict. Our seabird distribution models reflect known habitat associations, species hotspots, and community organization relative to oceanic and coastal marine processes. Application of species distribution models will benefit the assessments of critical habitat and potential responses to climate change and anthropogenic disturbance, which will provide insight into how species may change in polar ecosystems

    Drivers of intrapopulation variation in resource use in a generalist predator, the macaroni penguin

    Get PDF
    Intrapopulation variation in resource use occurs in many populations of generalist predators with important community and evolutionary implications. One of the hypothesised mechanisms for such widespread variation is ecological opportunity, i.e. resource availability determined by intrinsic constraints and extrinsic conditions. We combined tracking data and stable isotope analysis to examine how breeding constraints and prey conditions influenced intrapopulation variation in resource use among macaroni penguins Eudyptes chrysolophus. Isotopic variation was also examined as a function of breeding success, individual traits and individual specialisation. Variation in isotope ratios was greatest across multiple tissue types when birds were able to undertake mid-range foraging trips (i.e. during incubation and pre-moult). This variation was highly consistent between years that spanned a 3-fold difference in local krill Euphausia superba density and was also highly consistent at the individual level between 2 years that had similar krill densities. However, by comparing our results with previous work on the same population, it appeared that a decrease in local prey availability can increase intrapopulation variation in resource use during periods with more restricted foraging ranges (i.e. during brood-guard and crèche). This study highlights the importance of considering ecological interactions that operate on multiple spatio-temporal scales when examining the drivers of resource use in populations of generalist predators

    Foraging behavior of Adelie penguins in various sea ice conditions in Signy Island, South Orkney Islands

    Get PDF
    第2回極域科学シンポジウム/第33回極域生物シンポジウム 11月17日(木) 統計数理研究所 3階リフレッシュフロ
    corecore