187 research outputs found

    Development of lightweight ceramic ablators and arc-jet test results

    Get PDF
    Lightweight ceramic ablators (LCA's) were recently developed at Ames to investigate the use of low density fibrous substrates and organic resins as high temperature, high strength ablative heat shields. Unlike the traditional ablators, LCA's use porous ceramic/carbon fiber matrices as substrates for structural support, and polymeric resins as fillers. Several substrates and resins were selected for the initial studies, and the best performing candidates were further characterized. Three arcjet tests were conducted to determine the LCA's thermal performance and ablation characteristics in a high enthalpy, hypersonic flow environment. Mass loss and recession measurements were obtained for each sample at post test, and the recession rates were determined from high speed motion films. Surface temperatures were also obtained from optical pyrometers

    On the regularity of SLE trace

    Get PDF
    We revisit regularity of SLE trace, for all κ≠8, and establish Besov regularity under the usual half-space capacity parametrization. With an embedding theorem of Garsia–Rodemich–Rumsey type, we obtain finite moments (and hence almost surely) optimal variation regularity with index min(1+κ/8,2), improving on previous works of Werness, and also (optimal) Hölder regularity à la Johansson Viklund and Lawler

    Composite flexible insulation for thermal protection of space vehicles

    Get PDF
    A composite flexible blanket insulation (CFBI) system considered for use as a thermal protection system for space vehicles is described. This flexible composite insulation system consists of an outer layer of silicon carbide fabric, followed by alumina mat insulation, and alternating layers of aluminized polyimide film and aluminoborosilicate scrim fabric. A potential application of this composite insulation would be as a thermal protection system for the aerobrake of the aeroassist space transfer vehicle (ASTV). It would also apply to other space vehicles subject to high convective and radiative heating during atmospheric entry. The thermal performance of this composite insulation as exposed to a simulated atmospheric entry environment in a plasma arc test facility is described. Other thermophysical properties which affect the thermal response of this composite insulation is included. It shows that this composite insulation is effective as a thermal protection system at total heating rates up to 30.6 W/sq cm

    Secondary polymer layered impregnated tile

    Get PDF
    A low density organic polymer impregnated preformed fibrous ceramic article includes a plurality of layers. A front layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one organic polymer. A middle layer includes polymer impregnated ceramic fibers. A back layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one low temperature pyrolyzing organic polymer capable of decomposing without depositing residues

    Low-density resin impregnated ceramic article and method for making the same

    Get PDF
    A low-density resin impregnated ceramic article advantageously employed as a structural ceramic ablator comprising a matrix of ceramic fibers. The fibers of the ceramic matrix are coated with an organic resin film. The organic resin can be a thermoplastic resin or a cured thermosetting resin. In one embodiment, the resin is uniformly distributed within the ceramic article. In a second embodiment, the resin is distributed so as to provide a density gradient along at least one direction of the ceramic article. The resin impregnated ceramic article is prepared by providing a matrix of ceramic fibers; immersing the matrix of ceramic fibers in a solution of a solvent and an organic resin infiltrant; and removing the solvent to form a resin film on the ceramic fibers

    Multilayer Impregnated Fibrous Thermal Insulation Tiles

    Get PDF
    The term "secondary polymer layered impregnated tile" ("SPLIT") denotes a type of ablative composite-material thermal- insulation tiles having engineered, spatially non-uniform compositions. The term "secondary" refers to the fact that each tile contains at least two polymer layers wherein endothermic reactions absorb considerable amounts of heat, thereby helping to prevent overheating of an underlying structure. These tiles were invented to afford lighter-weight alternatives to the reusable thermal-insulation materials heretofore variously used or considered for use in protecting the space shuttles and other spacecraft from intense atmospheric-entry heating

    A Schr\"odinger Equation for Evolutionary Dynamics

    Get PDF
    We establish an analogy between the Fokker-Planck equation describing evolutionary landscape dynamics and the Schr\"{o}dinger equation which characterizes quantum mechanical particles, showing how a population with multiple genetic traits evolves analogously to a wavefunction under a multi-dimensional energy potential in imaginary time. Furthermore, we discover within this analogy that the stationary population distribution on the landscape corresponds exactly to the ground-state wavefunction. This mathematical equivalence grants entry to a wide range of analytical tools developed by the quantum mechanics community, such as the Rayleigh-Ritz variational method and the Rayleigh-Schr\"{o}dinger perturbation theory, allowing us to not only make reasonable quantitative assessments but also explore fundamental biological inquiries. We demonstrate the effectiveness of these tools by estimating the population success on landscapes where precise answers are elusive, and unveiling the ecological consequences of stress-induced mutagenesis -- a prevalent evolutionary mechanism in pathogenic and neoplastic systems. We show that, even in a unchanging environment, a sharp mutational burst resulting from stress can always be advantageous, while a gradual increase only enhances population size when the number of relevant evolving traits is limited. Our interdisciplinary approach offers novel insights, opening up new avenues for deeper understanding and predictive capability regarding the complex dynamics of evolving populations

    Probing the protective mechanism of poly-β-hydroxybutyrate against vibriosis by using gnotobiotic Artemia franciscana and Vibrio campbellii as host-pathogen model

    Get PDF
    The compound poly-beta-hydroxybutyrate (PHB), a polymer of the short chain fatty acid beta-hydroxybutyrate, was shown to protect experimental animals against a variety of bacterial diseases, (including vibriosis in farmed aquatic animals), albeit through undefined mechanisms. Here we aimed at unraveling the underlying mechanism behind the protective effect of PHB against bacterial disease using gnotobiotically-cultured brine shrimp Artemia franciscana and pathogenic Vibrio campbellii as host-pathogen model. The gnotobiotic model system is crucial for such studies because it eliminates any possible microbial interference (naturally present in any type of aquatic environment) in these mechanistic studies and furthermore facilitates the interpretation of the results in terms of a cause effect relationship. We showed clear evidences indicating that PHB conferred protection to Artemia host against V. campbellii by a mechanism of inducing heat shock protein (Hsp) 70. Additionally, our results also showed that this salutary effect of PHB was associated with the generation of protective innate immune responses, especially the prophenoloxidase and transglutaminase immune systems - phenomena possibly mediated by PHB-induced Hsp70. From overall results, we conclude that PHB induces Hsp70 and this induced Hsp70 might contribute in part to the protection of Artemia against pathogenic V. campbellii

    Low Density Resin Impregnated Ceramic Article Having an Average Density of 0.15 to 0.40 G/CC

    Get PDF
    A low-density resin impregnated ceramic article advantageously employed as a structural ceramic ablator comprising a fired preform of ceramic fibers. The fibers of the ceramic preform are coated with an organic resin film. The organic resin can be a thermoplastic resin or a cured thermosetting resin. In one embodiment, the resin is uniformly distributed within the ceramic article. In a second embodiment, the resin is distributed so as to provide a density gradient along at least one direction of the ceramic article. The resin impregnated ceramic article is prepared by providing a fired preform of ceramic fibers; immersing the preform of ceramic fibers in a solution of a solvent and an organic resin infiltrant; and removing the solvent to form a resin film on the ceramic fibers
    • …
    corecore