463 research outputs found

    The future of AD clinical trials with the advent of anti-amyloid therapies: An CTAD Task Force report

    Get PDF
    BACKGROUND: Aducanumab (ADUHELMTM) was approved for the treatment of Alzheimer\u27s disease (AD) in the US. This approval was supported by an effect on the cerebral amyloid plaque load and evidence of cognitive efficacy to be confirmed in post-marketing trials. Other anti-amyloid antibodies are under investigation in phase III (donanemab, lecanemab, gantenerumab) and have shown preliminary evidence of a cognitive benefit in phase II trials. Although these agents target a small segment of patients with mild cognitive impairment due to AD or mild AD dementia, their advent will change the design of future clinical trials both for anti-amyloid and non-amyloid drugs. These changes will promote the selection of patients in clinical trials by amyloid and tau biomarkers that identify patients with appropriate biology and may follow the treatment response to approved amyloid antibodies. The use of these agents creates the opportunity to test combined drug therapies and to conduct comparative assessments with innovative therapies and newly approved drugs available in clinical practice. Blood-based AD biomarkers should be implemented in research and could facilitate the recruitment into clinical trials. Anti-amyloid antibodies will have positive (e.g., more early diagnosis) and negative impacts (some subjects will be reluctant to participate in trials and risk assignment to placebo) on AD trials in the immediate future. We present the results of the CTAD Task Force on this topic, in Boston, November 6, 2021

    Interictal Spiking Increases with Sleep Depth in Temporal Lobe Epilepsy

    Full text link
    Purpose : To test the hypothesis that deepening sleep activates focal interictal epileptiform discharges (IEDs), we performed EEG-polysomnography in 21 subjects with medically refractory temporal lobe epilepsy. Methods: At the time of study, subjects were seizure-free for 224 h and were taking stable doses of antiepileptic medications (AEDs). Sleep depth was measured by log delta power (LDP). Visual sleep scoring and visual detection of IEDs also were performed. Logistic-regression analyses of IED occurrence in relation to LDP were carried out for two groups of subjects, nine with frequent IEDs (group 1) and 12 with rare IEDs (group 2). Results: The LDP differentiated visually scored non-rapid eye movement (NREM) sleep stages (p = 0.0001). The IEDs were most frequent in NREM stages 3/4 and least frequent in REM sleep. Within NREM sleep, in both groups, IEDs were more frequent at higher levels of LDP (p < 0.05). In group 1, after accounting for the level of LDP, IEDs were more frequent (a) on the ascending limb of LDP and with more rapid increases in LDP (p = 0.007), (b) in NREM than in REM sleep (p = 0.002), and (c) closer to sleep onset (p < 0.0001). Fewer than 1% of IEDs occurred within 10 s of an EEG arousal. Conclusions: Processes underlying the deepening of NREM sleep, including progressive hyperpolarization in thalamocortical projection neurons, may contribute to IED activation in partial epilepsy. Time from sleep onset and NREM versus REM sleep also influence IED occurrence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65422/1/j.1528-1157.1998.tb01329.x.pd

    Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe

    Get PDF
    Shigella are human-adapted Escherichia coli that have gained the ability to invade the human gut mucosa and cause dysentery1,2, spreading efficiently via low-dose fecal-oral transmission3,4. Historically, S. sonnei has been predominantly responsible for dysentery in developed countries, but is now emerging as a problem in the developing world, apparently replacing the more diverse S. flexneri in areas undergoing economic development and improvements in water quality4-6. Classical approaches have shown S. sonnei is genetically conserved and clonal7. We report here whole-genome sequencing of 132 globally-distributed isolates. Our phylogenetic analysis shows that the current S. sonnei population descends from a common ancestor that existed less than 500 years ago and has diversified into several distinct lineages with unique characteristics. Our analysis suggests the majority of this diversification occurred in Europe, followed by more recent establishment of local pathogen populations in other continents predominantly due to the pandemic spread of a single, rapidly-evolving, multidrug resistant lineage

    Spatial distribution of cerebral white matter lesions predicts progression to mild cognitive impairment and dementia

    No full text
    CONTEXT White matter lesions (WML) increase the risk of dementia. The relevance of WML location is less clear. We sought to determine whether a particular WML profile, based on the density and location of lesions, could be associated with an increased risk of mild cognitive impairment (MCI) or dementia over the following 7 years. METHODS In 426 healthy subjects from a cohort of community-dwelling people aged 65 years and over (ESPRIT Project), standardized cognitive and neurological evaluations were repeated after 2, 4 and 7 years. Patterns of WML were computed with a supervised data mining approach (decision trees) using the regional WML volumes (frontal, parietal, temporal, and occipital regions) and the total WML volume estimated at baseline. Cox proportional hazard models were then constructed to study the association between WML patterns and risk of MCI/dementia. RESULTS Total WML volume and percentage of WML in the temporal region proved to be the best predictors of progression to MCI and dementia. Specifically, severe total WML load with a high proportion of lesions in the temporal region was significantly associated with the risk of developing MCI or dementia. CONCLUSIONS Above a certain threshold of damage, a pattern of WML clustering in the temporal region identifies individuals at increased risk of MCI or dementia. As this WML pattern is observed before the onset of clinical symptoms, it may facilitate the detection of patients at risk of MCI/dementia.The ESPRIT Project is financed by the regional government of Languedoc-Roussillon (http://www.laregion.fr), the Agence Nationale de la Recherche (ANR: http://www.agence-nationale-recherche.fr) and an unconditional grant from Novartis (http://www.novartis.fr). This study is also supported by France Alzheimer (http://www.francealzheimer.org/)

    The host metabolite D-serine contributes to bacterial niche specificity through gene selection

    Get PDF
    Escherichia coli comprise a diverse array of both commensals and niche-specific pathotypes. The ability to cause disease results from both carriage of specific virulence factors and regulatory control of these via environmental stimuli. Moreover, host metabolites further refine the response of bacteria to their environment and can dramatically affect the outcome of the host–pathogen interaction. Here, we demonstrate that the host metabolite, D-serine, selectively affects gene expression in E. coli O157:H7. Transcriptomic profiling showed exposure to D-serine results in activation of the SOS response and suppresses expression of the Type 3 Secretion System (T3SS) used to attach to host cells. We also show that concurrent carriage of both the D-serine tolerance locus (dsdCXA) and the locus of enterocyte effacement pathogenicity island encoding a T3SS is extremely rare, a genotype that we attribute to an ‘evolutionary incompatibility’ between the two loci. This study demonstrates the importance of co-operation between both core and pathogenic genetic elements in defining niche specificity

    Decreased sAβPPβ, Aβ38, and Aβ40 Cerebrospinal Fluid Levels in Frontotemporal Dementia.

    Get PDF
    International audienceTo improve the etiological diagnosis of neurodegenerative dementias like Alzheimer's disease (AD) or frontotemporal dementia (FTD), we evaluated the value of individual and combined measurements of the following relevant cerebrospinal fluid (CSF) biomarkers: Tau, 181p-Tau, Aβ38, Aβ40, Aβ42, sAβPPα, and sAβPPβ. This study conducted in two centers included patients with FTD (n = 34), AD (n = 52), as well as a control group of persons without dementia (CTRL, n = 42). Identical clinical criteria and pre-analytical conditions were used while CSF biomarkers were measured using commercial single and multiplex quantitative immunoassays. Thorough statistical analyses, including ROC curves, logistic regressions, and decision trees, were performed. We validated in AD the specific increase of p-Tau levels and the decrease of Aβ42 levels, two biological hallmarks of this disease. Tau concentrations were highest in AD and intermediate in FTD when compared to CTRL. The most interesting results were obtained by focusing on amyloid biomarkers as we found out in FTD a significant decrease of sAβPPβ, Aβ38, and Aβ40 levels. Aβ38 in particular was the most useful biomarker to differentiate FTD subjects from the CTRL population. Combining p-Tau and Aβ38 led us to correctly classifying FTD patients with sensitivity at 85% and specificity at 82%. Significant changes in amyloid biomarkers, particularly for Aβ38, are therefore seen in FTD. This could be quite useful for diagnosis purposes and it might provide additional evidence on the interrelationship between Tau and AβPP biology which understanding is essential to progress towards optimal therapeutic and diagnostic approaches of dementia

    CRISPR Interference Directs Strand Specific Spacer Acquisition

    Get PDF
    Background: CRISPR/Cas is a widespread adaptive immune system in prokaryotes. This system integrates short stretches of DNA derived from invading nucleic acids into genomic CRISPR loci, which function as memory of previously encountered invaders. In Escherichia coli, transcripts of these loci are cleaved into small RNAs and utilized by the Cascade complex to bind invader DNA, which is then likely degraded by Cas3 during CRISPR interference. Results: We describe how a CRISPR-activated E. coli K12 is cured from a high copy number plasmid under non-selective conditions in a CRISPR-mediated way. Cured clones integrated at least one up to five anti-plasmid spacers in genomic CRISPR loci. New spacers are integrated directly downstream of the leader sequence. The spacers are non-randomly selected to target protospacers with an AAG protospacer adjacent motif, which is located directly upstream of the protospacer. A cooccurrence of PAM deviations and CRISPR repeat mutations was observed, indicating that one nucleotide from the PAM is incorporated as the last nucleotide of the repeat during integration of a new spacer. When multiple spacers were integrated in a single clone, all spacer targeted the same strand of the plasmid, implying that CRISPR interference caused by the first integrated spacer directs subsequent spacer acquisition events in a strand specific manner. Conclusions: The E. coli Type I-E CRISPR/Cas system provides resistance against bacteriophage infection, but also enables removal of residing plasmids. We established that there is a positive feedback loop between active spacers in a cluster – i

    Bacterial microevolution and the Pangenome

    Get PDF
    The comparison of multiple genome sequences sampled from a bacterial population reveals considerable diversity in both the core and the accessory parts of the pangenome. This diversity can be analysed in terms of microevolutionary events that took place since the genomes shared a common ancestor, especially deletion, duplication, and recombination. We review the basic modelling ingredients used implicitly or explicitly when performing such a pangenome analysis. In particular, we describe a basic neutral phylogenetic framework of bacterial pangenome microevolution, which is not incompatible with evaluating the role of natural selection. We survey the different ways in which pangenome data is summarised in order to be included in microevolutionary models, as well as the main methodological approaches that have been proposed to reconstruct pangenome microevolutionary history

    A Genome-Wide Analysis of Promoter-Mediated Phenotypic Noise in Escherichia coli

    Get PDF
    Gene expression is subject to random perturbations that lead to fluctuations in the rate of protein production. As a consequence, for any given protein, genetically identical organisms living in a constant environment will contain different amounts of that particular protein, resulting in different phenotypes. This phenomenon is known as “phenotypic noise.” In bacterial systems, previous studies have shown that, for specific genes, both transcriptional and translational processes affect phenotypic noise. Here, we focus on how the promoter regions of genes affect noise and ask whether levels of promoter-mediated noise are correlated with genes' functional attributes, using data for over 60% of all promoters in Escherichia coli. We find that essential genes and genes with a high degree of evolutionary conservation have promoters that confer low levels of noise. We also find that the level of noise cannot be attributed to the evolutionary time that different genes have spent in the genome of E. coli. In contrast to previous results in eukaryotes, we find no association between promoter-mediated noise and gene expression plasticity. These results are consistent with the hypothesis that, in bacteria, natural selection can act to reduce gene expression noise and that some of this noise is controlled through the sequence of the promoter region alon
    corecore