4 research outputs found
Physicochemical properties and biological effects of quaternary ammonium methacrylates in an experimental adhesive resin for bonding orthodontic brackets
Fixed orthodontic appliances may lead to biofilm accumulation around them that may increase caries risk. This study aimed to evaluate the influence of quaternary ammonium methacrylates (QAMs) on the physicochemical properties, cytotoxicity, and antibacterial activity of adhesive resins for orthodontic purposes. Methodology: A base resin was prepared with a comonomer blend and photoinitiator/co-initiator system. Two different QAMs were added to the base adhesive: dimethylaminododecyl methacrylate at 5 wt.% (DMADDM) or dimethylaminohexadecyl methacrylate (DMAHDM) at 10 wt.%. The base adhesive, without QAMs, (GC) and the commercial Transbond™ XT Primer 3M (GT) were used as control. The resins were tested immediately and after six months of aging in the water regarding the antibacterial activity and shear bond strength (SBS). The antibacterial activity was tested against Streptococcus mutans via metabolic activity assay (MTT test). The groups were also tested for the degree of conversion (DC) and cytotoxicity against keratinocytes. Results:The resins containing QAM showed antibacterial activity compared to the commercial material by immediately reducing the metabolic activity by about 60%. However, the antibacterial activity decreased after aging (p<0.05). None of the groups presented any differences for SBS (p>0.05) and DC (p>0.05). The incorporation of DMADDM and DMAHDM significantly reduced the keratinocyte viability compared to the GT and GC groups (p<0.05). Conclusion: Both adhesives with QAMs showed a significant reduction in bacterial metabolic activity, but this effect decreased after water aging. Lower cell viability was observed for the group with the longer alkyl chain-QAM, without significant differences for the bonding ability and degree of conversion. The addition of QAMs in adhesives may affect the keratinocytes viability, and the aging effects maybe decrease the bacterial activity of QAM-doped materials
Effect of fluoride dentifrice and casein phosphopeptide-amorphous calcium phosphate cream with and without fluoride in preventing enamel demineralization in a pH cyclic study
Abstract Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) complexes are anticariogenic and capable of remineralizing the early stages of enamel lesions. The use of fluoride prevents dental decay and the association of CPP-ACP with fluoride can increase remineralization. Objective: To evaluate the effect of CPP-ACP and CPP-ACPF creams associated with a fluoride dentifrice to prevent enamel demineralization in a pH cyclic model. Material and Methods: Previously selected by surface microhardness (SH) analysis, human enamel blocks (n = 56) were submitted to daily treatment with dentifrice in a pH-cycling model. The enamel blocks were divided into four groups; G1: Crest™ Cavity Protection - Procter & Gamble (1,100 ppmF of NaF); G2: Crest™ +MI Paste (MP) - Recaldent™ GC Corporation Tokyo, Japan); G3: Crest™ + MI Paste Plus (MPP) - Recaldent™ 900 ppm as NaF, GC Corporation Tokyo, Japan), and G4: control, saliva. Specimens were soaked alternatively in a demineralizing solution and in artificial saliva for 5 d. The fluoride dentifrice, with proportion of 1:3 (w/w), was applied three times for 60 s after the remineralization period. The undiluted MP and MPP creams were applied for 3 m/d. After cycling, SH was re-measured and cross section microhardness measurements were taken. Results: The SH values observed for the groups G3 (257±70), G1 (205±70), and G2 (208±84) differed from the G4 group (98±110) (one-way ANOVA and Tukey's post hoc test). There were no differences between the groups G1xG2, G2xG3, and G1xG3 for demineralization inhibition. The percentage of volume mineral showed that, when applied with fluoride dentifrice, MPP was the most effective in preventing enamel demineralization at 50 µ from the outer enamel surface (Kruskal-Wallis and Mann Whitney p<0.05). Conclusion: Fluoride dentifrice associated with CPP-ACPF inhibited subsurface enamel demineralization
Effect of fluoride dentifrice and casein phosphopeptide-amorphous calcium phosphate cream with and without fluoride in preventing enamel demineralization in a pH cyclic study
<div><p>Abstract Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) complexes are anticariogenic and capable of remineralizing the early stages of enamel lesions. The use of fluoride prevents dental decay and the association of CPP-ACP with fluoride can increase remineralization. Objective: To evaluate the effect of CPP-ACP and CPP-ACPF creams associated with a fluoride dentifrice to prevent enamel demineralization in a pH cyclic model. Material and Methods: Previously selected by surface microhardness (SH) analysis, human enamel blocks (n = 56) were submitted to daily treatment with dentifrice in a pH-cycling model. The enamel blocks were divided into four groups; G1: Crest™ Cavity Protection - Procter & Gamble (1,100 ppmF of NaF); G2: Crest™ +MI Paste (MP) - Recaldent™ GC Corporation Tokyo, Japan); G3: Crest™ + MI Paste Plus (MPP) - Recaldent™ 900 ppm as NaF, GC Corporation Tokyo, Japan), and G4: control, saliva. Specimens were soaked alternatively in a demineralizing solution and in artificial saliva for 5 d. The fluoride dentifrice, with proportion of 1:3 (w/w), was applied three times for 60 s after the remineralization period. The undiluted MP and MPP creams were applied for 3 m/d. After cycling, SH was re-measured and cross section microhardness measurements were taken. Results: The SH values observed for the groups G3 (257±70), G1 (205±70), and G2 (208±84) differed from the G4 group (98±110) (one-way ANOVA and Tukey's post hoc test). There were no differences between the groups G1xG2, G2xG3, and G1xG3 for demineralization inhibition. The percentage of volume mineral showed that, when applied with fluoride dentifrice, MPP was the most effective in preventing enamel demineralization at 50 µ from the outer enamel surface (Kruskal-Wallis and Mann Whitney p<0.05). Conclusion: Fluoride dentifrice associated with CPP-ACPF inhibited subsurface enamel demineralization.</p></div
Papel da educação apĂłs o medo pandĂŞmico do COVID-19: uma perspectiva multidisciplinar e cientĂfica
In response to the outbreak of the novel Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), pathogen of the new coronavirus disease (COVID-19), several sectors and social activities have been affected, including education. At first, it is explained that educators and students can feel fragile during and after the SARS-CoV-2 outbreak. Subsequently, it is discussed that their relationship ought to be carefully established given the triggering of psychological and neuropsychiatric effects arising from neural coding and plasticity processes, which result in the formation of positive and negative memories in the short to long term. Finally, it is pointed out that the SARS-CoV-2 pandemic generates a need for adequacy and adaptation for the significant attention to students during the re-starting of studies, given that possible disorders of sensory modulation and involvement of limbic brain areas triggered in situations of risk of death, potential or real threat, can happen. It is assumed that at times of the SARS-CoV-2 pandemic, in addition to preserving life, one of the challenges is the behavioural (re)organisation, which includes habits from the educational context that need to contemplate a scientific perspective, seeking to transform the consequences of the pandemic fear on opportunities to reinforcement of familiar links. In the context of modern rationality, the SARS-CoV-2 pandemic is also a period to think about the relationship between scientific knowledge and common sense. With this logic, neurosciences can develop a new format for the teaching-learning process, so that educators and students experiencing the pandemic threatening do not manifest psychological distress and secondary consequences. Therefore, education can be considered a central space in decision-making in the face of SARS-CoV-2 pandemic. In this sense, the urgency of a multidisciplinary strategies development is highlighted, connecting the synergy between neurosciences and education after the COVID-19 pandemic