47 research outputs found

    Behavior adaptation for mobile robots via semantic map compositions of constraint-based controllers

    Get PDF
    Specifying and solving Constraint-based Optimization Problems (COP) has become a mainstream technology for advanced motion control of mobile robots. COP programming still requires expert knowledge to transform specific application context into the right configuration of the COP parameters (i.e., objective functions and constraints). The research contribution of this paper is a methodology to couple the context knowledge of application developers to the robot knowledge of control engineers, which, to our knowledge, has not yet been carried out. The former is offered a selected set of symbolic descriptions of the robots’ capabilities (its so-called “behavior semantics”) that are translated in control actions via “templates” in a “semantic map”; the latter contains the parameters that cover contextual dependencies in an application and robot vendor-independent way. The translation from semantics to control templates takes place in an “interaction layer” that contains 1) generic knowledge about robot motion capabilities (e.g., depending on the kinematic type of the robots), 2) spatial queries to extract relevant COP parameters from a semantic map (e.g., what is the impact of entering different types of “collision areas”), and 3) generic application knowledge (e.g., how the robots’ behavior is impacted by priorities, emergency, safety, and prudence). This particular design of, and interplay between, the application, interaction, and control layers provides a structured, conceptually simple approach to advance the complexity of mobile robot applications. Eventually, industry-wide cooperation between representatives of the application and control communities should result in an interaction layer with different standardized versions of semantic complexity.</p

    A Bayesian optimization framework for the automatic tuning of MPC-based shared controllers

    Full text link
    This paper presents a Bayesian optimization framework for the automatic tuning of shared controllers which are defined as a Model Predictive Control (MPC) problem. The proposed framework includes the design of performance metrics as well as the representation of user inputs for simulation-based optimization. The framework is applied to the optimization of a shared controller for an Image Guided Therapy robot. VR-based user experiments confirm the increase in performance of the automatically tuned MPC shared controller with respect to a hand-tuned baseline version as well as its generalization ability

    A compact in vitro test bench for cardiovascular flow analysis

    Get PDF
    A low-cost particle image velocimetry set-up that allows to investigate the fluid dynamics inside realistic coronary artery phantoms has been implemented. The proposed smart test bench for experimental characterization of arterial hemodynamics also in the presence of implanted devices represents a low-cost equipment that can be easily implemented in non-expert laboratories for research as well as educational applications

    Wall shear stress topological skeleton analysis in cardiovascular flows: Methods and applications

    Get PDF
    A marked interest has recently emerged regarding the analysis of the wall shear stress (WSS) vector field topological skeleton in cardiovascular flows. Based on dynamical system theory, the WSS topological skeleton is composed of fixed points, i.e., focal points where WSS locally vanishes, and unstable/stable manifolds, consisting of contraction/expansion regions linking fixed points. Such an interest arises from its ability to reflect the presence of near-wall hemodynamic features associated with the onset and progression of vascular diseases. Over the years, Lagrangian-based and Eulerianbased post-processing techniques have been proposed aiming at identifying the topological skeleton features of the WSS. Here, the theoretical and methodological bases supporting the Lagrangian- and Eulerian-based methods currently used in the literature are reported and discussed, highlighting their application to cardiovascular flows. The final aim is to promote the use of WSS topological skeleton analysis in hemodynamic applications and to encourage its application in future mechanobiology studies in order to increase the chance of elucidating the mechanistic links between blood flow disturbances, vascular disease, and clinical observations

    Smartphone-based particle image velocimetry for cardiovascular flows applications: A focus on coronary arteries

    Get PDF
    An experimental set-up is presented for the in vitro characterization of the fluid dynamics in personalized phantoms of healthy and stenosed coronary arteries. The proposed set-up was fine-tuned with the aim of obtaining a compact, flexible, low-cost test-bench for biomedical applications. Technically, velocity vector fields were measured adopting a so-called smart-PIV approach, consisting of a smartphone camera and a low-power continuous laser (30 mW). Experiments were conducted in realistic healthy and stenosed 3D-printed phantoms of left anterior descending coronary artery reconstructed from angiographic images. Time resolved image acquisition was made possible by the combination of the image acquisition frame rate of last generation commercial smartphones and the flow regimes characterizing coronary hemodynamics (velocities in the order of 10 cm/s). Different flow regimes (Reynolds numbers ranging from 20 to 200) were analyzed. The smart-PIV approach was able to provide both qualitative flow visualizations and quantitative results. A comparison between smart-PIV and conventional PIV (i.e., the gold-standard experimental technique for bioflows characterization) measurements showed a good agreement in the measured velocity vector fields for both the healthy and the stenosed coronary phantoms. Displacement errors and uncertainties, estimated by applying the particle disparity method, confirmed the soundness of the proposed smart-PIV approach, as their values fell within the same range for both smart and conventional PIV measured data (≈5% for the normalized estimated displacement error and below 1.2 pixels for displacement uncertainty). In conclusion, smart-PIV represents an easy-to-implement, low-cost methodology for obtaining an adequately robust experimental characterization of cardiovascular flows. The proposed approach, to be intended as a proof of concept, candidates to become an easy-to-handle test bench suitable for use also outside of research labs, e.g., for educational or industrial purposes, or as first-line investigation to direct and guide subsequent conventional PIV measurements

    Behavior adaptation for mobile robots via semantic map compositions of constraint-based controllers

    Get PDF
    Specifying and solving Constraint-based Optimization Problems (COP) has become a mainstream technology for advanced motion control of mobile robots. COP programming still requires expert knowledge to transform specific application context into the right configuration of the COP parameters (i.e., objective functions and constraints). The research contribution of this paper is a methodology to couple the context knowledge of application developers to the robot knowledge of control engineers, which, to our knowledge, has not yet been carried out. The former is offered a selected set of symbolic descriptions of the robots’ capabilities (its so-called “behavior semantics”) that are translated in control actions via “templates” in a “semantic map”; the latter contains the parameters that cover contextual dependencies in an application and robot vendor-independent way. The translation from semantics to control templates takes place in an “interaction layer” that contains 1) generic knowledge about robot motion capabilities (e.g., depending on the kinematic type of the robots), 2) spatial queries to extract relevant COP parameters from a semantic map (e.g., what is the impact of entering different types of “collision areas”), and 3) generic application knowledge (e.g., how the robots’ behavior is impacted by priorities, emergency, safety, and prudence). This particular design of, and interplay between, the application, interaction, and control layers provides a structured, conceptually simple approach to advance the complexity of mobile robot applications. Eventually, industry-wide cooperation between representatives of the application and control communities should result in an interaction layer with different standardized versions of semantic complexity

    The Use of Psychotropic Medication in Pediatric Oncology for Acute Psychological and Psychiatric Problems: Balancing Risks and Benefits

    Get PDF
    Severe acute behavioral and emotional problems represent one of the most serious treatment-related adverse effects for children and adolescents who have cancer. The critical and severe nature of these symptoms often makes necessary the use of psychotropic drugs. A working group composed of experts in multiple disciplines had the task of creating an agreement regarding a management plan for severe acute behavioral and emotional problems (SABEPs) in children and adolescents treated for cancer. To obtain global information on the use of psychotropic drugs in pediatric oncology, the working group first developed and mailed a 15-item questionnaire to many Italian pediatric oncology centers. Overall, an evident lack of knowledge and education regarding the use of psychotropic medications for the treatment of SABEPs was found. Thus, by referring to an adapted version of the Delphi method of consensus and standard methods for the elaboration of clinical questions (PICOs), the working group elaborated evidence-based recommendations for psychotropic drugs in the pediatric oncology setting. Furthermore, based on a thorough multivariate analysis of needs and difficulties, a comprehensive management flow was developed to optimize therapeutic interventions, which allows more accurate and efficient matching of the acute needs of patients while guiding treatment options
    corecore