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A B S T R A C T

Increasing reliance on automation and robotization presents great opportunities to improve the management
of construction sites as well as existing buildings. Crucial in the use of robots in a built environment is their
capacity to locate themselves and navigate as autonomously as possible. Robots often rely on planar and 3D
laser scanners for that purpose, and building information models (BIM) are seldom used, for a number of
reasons, namely their unreliability, unavailability, and mismatch with localization algorithms used in robots.
However, while BIM models are becoming increasingly reliable and more commonly available in more standard
data formats (JSON, XML, RDF), they become more promising and reliable resources for localization and indoor
navigation, in particular in the more static types of existing infrastructure (existing buildings). In this article,
we specifically investigate to what extent and how such building data can be used for such robot navigation.
Data flows are built from BIM model to local repository and further to the robot, making use of graph data
models (RDF) and JSON data formats. The local repository can hereby be considered to be a digital twin of the
real-world building. Navigation on the basis of a BIM model is tested in a real world environment (university
building) using a standard robot navigation technology stack. We conclude that it is possible to rely on BIM
data and we outline different data flows from BIM model to digital twin and to robot. Future work can focus
on (1) making building data models more reliable and standard (modelling guidelines and robot world model),
(2) improving the ways in which building features in the digital building model can be recognized in 3D point
clouds observed by the robots, and (3) investigating possibilities to update the BIM model based on robot
feedback.
1. Introduction

1.1. A robotized world

The built environment has been digitizing rapidly over the past few
years. This includes both technologies for the engineering and construc-
tion phase, and the operational real estate phase. In both cases, the use
of robots to automate and take over tasks from humans is increasing.
Most commonly, robots are considered for taking over (1) repeated
tasks that can easily be automated (e.g. order picking in warehouses,
cleaning robots, site inspection, welding and assembly), and (2) critical
and life-threatening tasks (e.g. bomb squad, emergency support). As
a result, the future of technology in Architecture, Engineering and
Construction (AEC) and operational maintenance (OM) includes a much
more robotized world, which is clearly proposed and outlined by Bock
[1].
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(E. Torta).

Further to the use of remote-controlled devices and the above-
mentioned ‘controlled environments’, the future is likely to see au-
tonomous robots deployed more and more in buildings shared with
humans, such as hospitals, schools and warehouses. There is a variety
of tasks that robots can perform in such environments, for example
medicine delivery in hospitals [2], cleaning [3], healthcare support in
contaminated zones, or order picking in warehouses [4].

In all of these scenarios, robots need to navigate to different places
to complete their tasks. Meals need to be delivered to different rooms
and items need to be picked from different shelves. Many of such
more advanced cases of robot localization and navigation [5] are
constantly changing, uncertain, and hazardous. It is therefore important
for robot navigation to be able to rely on as many inputs as possible for
localization as well as navigation, including a connection to a live state
of its environment (digital twin of buildings and surroundings).
vailable online 5 April 2023
474-0346/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.aei.2023.101959
Received 11 September 2022; Received in revised form 21 February 2023; Accepte
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

d 21 March 2023

https://www.elsevier.com/locate/aei
http://www.elsevier.com/locate/aei
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
https://pi.pauwel.be/tue/ADVEI2023_robotnavigation_additionaldata.html
mailto:p.pauwels@tue.nl
mailto:r.w.d.koning@student.tue.nl
mailto:r.w.m.hendrikx@tue.nl
mailto:e.torta@tue.nl
https://doi.org/10.1016/j.aei.2023.101959
https://doi.org/10.1016/j.aei.2023.101959
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2023.101959&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Advanced Engineering Informatics 56 (2023) 101959P. Pauwels et al.

,

1.2. Maps for robot navigation

Robot navigation refers to the ability of a robot to autonomously
move from an initial position to a target position while avoiding
obstacles on the way [5]. In order to navigate, robots rely on several
input data sources. Data sources used by robots typically include, in
addition to the telemetric data obtained by the robot, 2D [6] or 3D [7]
occupancy grid maps, or user-specified semantic and metric maps such
as OpenStreetMap (OSM) for indoor navigation [8]. These maps are
critical for robot localization and navigation, as they form environ-
mental descriptions in the form of 2D or 3D maps. Such maps enable
different activities related to navigation such as localization [9], path
planning [10] and, when updated real-time, obstacle avoidance [5].
The below two sections provide more detail about such maps, how they
are typically created, and how they are used.

1.2.1. SLAM-based maps
There are two mainstreams approaches for creating such maps.

The first one assumes that the robot has no prior knowledge of the
environment : a map is created from onboard sensor data automatically,
while simultaneously localizing in this map (i.e. SLAM: Simultaneous
Localization and Mapping). Many references to several implementa-
tions of this SLAM technique can be found in Panigrahi and Bisoy [11].
This process can be done automatically by the robot (exploration) or by
remote operation. Depending on the sensors available on the robot, the
map can take the form of a 2D occupancy grid (i.e., for a 2D LiDaR
sensor [6]) or a 3D occupancy grid (i.e., for a 3D LiDaR [7] or RGB-
D camera [12]). More recent approaches also allow the inclusion of
semantic features in such maps like positions of chairs or tables [13,14].

The advantage of using SLAM approaches is that the robot is able to
derive the map autonomously and does not require humans to specify
relevant environmental configurations. One of the downsides of this
approach is that the initial exploration phase to create the map is
very time-consuming especially for large buildings. Also, there is the
chance that movable elements such as people or furniture become a
structural part of the map which would make the map incorrect once
they move their position. A considerable amount of cleaning needs to
happen before the map can be effectively used, which is an expensive
process.

1.2.2. Maps with contextualized semantics
The second approach for robot localization and navigation relies on

a map that is specified beforehand by users. Such a map has both seman-
tic and metric information. As an example, Naik et al. [8] extended
OpenStreetMap (OSM) with robot-specific semantic and geometric in-
formation such as doors, corridors and elevators. Point cloud data is
much less present in these maps, and localization and navigation relies
on a manually created map with well-defined semantic features (edges,
corners, etc.). This approach is explained in more detail in Crespo et al.
[13], showing how a semantic map can be made available to the robot,
including clearly defined concepts like ‘kitchen’, ‘chair’, ‘table’, ‘door’,
etc. This enables the robot to take into account semantically meaningful
contextual information if needed, in addition to the purely sensory
(odometric, visual) data such as point clouds, imagery, and motion
sensor data.

In contrast to the automatically generated SLAM-based maps, maps
generated manually by such users or ‘operators’ can be more reliable
in certain cases, depending on the operator’s sense of precision and
completeness. Operators are in charge of creating the correct map,
which is much closer to a traditional engineering workflow. They can,
for example, correctly label elements such as doors or windows, as well
as areas that are available or recommended for robot navigation. Op-
erators can also assign material properties in an easy and more reliable
way (manual assignment), which is especially useful for materials that
are hard to recognize for robots (e.g. glass, reflecting metals, etc.). As
2

such, they can, for example, identify and label glass surfaces which
are notoriously difficult to perceive by common robotic sensors such as
Light Detection and Ranging (LiDaR) scanners. This is, in some cases,
more efficient than relying on the SLAM approach for localization.
However, it requires specialized manual work in creating the semantic
map and representing all elements needed for navigation. Further-
more, some environmental elements that are important for computing
obstacle-free paths may not be included such as chairs or tables. They
need to be added to the map by the robot in real-time. At that point,
SLAM-based approaches for simultaneous localization and mapping can
become of use again.

1.3. Potential for the use of 3D BIM data

1.3.1. BIM data as live data sets
Instead of relying on manually created semantic maps (Section 1.2.2)

this research aims to find ways to create semantic maps for robot
navigation starting from Building Information Models (BIM models).
BIM models are dominating construction industry [15,16]. In particular
large buildings and infrastructure are seldom built without a BIM
model. These are detailed 3D semantic models describing the building
in detail, typically handed over to the building owner or facility man-
ager both in the form of a native BIM model as well as a vendor-neutral
Industry Foundation Classes (IFC) file [17]. Several research initiatives
have looked into using these BIM models for Facility Management
(FM) [18–20]. In reality, however, such BIM models or IFC models
are rarely used in the operational stage of a building, except as a
starting point for building a brand new and often 2D-oriented Building
Management System (BMS) [21,22].

This situation is gradually changing with the many efforts in the
AEC and FM industries to make building data (often BIM-based) more
easily available as live data sets rather than static files [23]. Building
data is more often transferred and made available on servers (local
servers as well as external cloud-based services), in formats that are
easier to use than the proprietary commercial formats (e.g. RVT) and
the EXPRESS-based IFC format. While the traditional AEC industry
tends to operate with closed BIM models in Revit as well as IFC files
in the EXPRESS language, several of the latest efforts aim to disclose
building data as RDF graphs, JSON data, XML snippets, and similar.
Reviews and examples of how these technologies are applied to the
building industry, in particular the RDF graphs and JSON formats, are
available in several articles [23–32]. As a result of these efforts, build-
ing data from BIM modelling environments can be more easily made
available as live data streams or a ‘live digital twin of an operational
building’ [22,32,33].

1.3.2. BIM data in BMS systems for smart buildings
The Smart Building domain is a clear case of how such BIM-

based semantic data are becoming increasingly useful. A large share
of the smart building domain is adopting JSON-based and RDF-based
data formats in their in-house data management for BMS systems and
Building Automation and Control (BAC) systems, as well as in their
communication with devices in the building (IoT streams using MQTT
protocol for JSON-based data transfer). As such, data-driven smart
buildings are created [24,29,30], in which building data is available in
a data format that is easier to combine with data from other systems. In
these cases, RDF graphs of the building (Linked Building Data1 graphs,
BOT, RealEstateCore, BRICK, DogOnt, etc.) are typically used to create
the semantic representation of the building [23]. These RDF graphs
are meant to be managed in a modular fashion (= linked building
data approach), where each partial graph covers a specific domain
aspect of the building (e.g. topology in BOT, appliances in SAREF, home
automation in DogOnt, sensor readings in BRICK and SSN, etc.) [27].
These representations cover the topological structure of the building

1 https://www.w3.org/community/lbd/

https://www.w3.org/community/lbd/
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(space, entity, storey, zone, etc.) as well as element classifications (wall,
door, floor) and element properties (material, width, height, thermal
transmittance) [23]. The JSON format is used in smart building appli-
cations for the same purpose (topology, element classes, properties),
but even more so for transmitting sensor values and streams of data
point values (temperatures, sensor readings, etc.) [22]. Because BMS
and BAC systems need (near to) real-time operation, they rely on direct
communication over network protocols (TCP, HTTP, MQTT), which
commonly happens using the JSON file format.

1.3.3. BIM data for robot navigation with semantic maps
With this possibility of managing building data as RDF graphs

(linked building data graphs — LBD graphs) in combination with
JSON-based data streams, opportunities also arise in the context of
robot navigation, in particular the robot navigation case that relies
on semantic maps (Section 1.2.2). The available building data (BIM
models as LBD graphs and JSON data streams) are namely very sim-
ilar to the semantic maps and semantic representations used in the
second approach for robot navigation that relies currently mostly on
manually creating these maps (Section 1.2.2). Instead of computing
the robot pose (localization) by comparing input LiDaR readings with
the internally computed SLAM grid map, the hypothesis is that direct
queries can be made from robot to the live BIM-based digital twin of
the building, which is available as RDF graphs and JSON streams in the
local servers.

Hence, 3D BIM data has big potential to informing robot navigation,
in particular when needing to create such semantic maps. Similar
investigations have been done, for example by Kim et al. [34], Kim
and Peavy [35], and Karimi et al. [36]. In Kim et al. [34] and Kim
and Peavy [35], IFC files of buildings are converted to SDF and URDF
formats. These are world model representations that are used in the
Gazebo simulator in the case of SDF, and in a Robot Operation System
(ROS) in the case of URDF. URDF is thus a more generic version of the
SDF file format. Both in the case of URDF and SDF, a robot world model
is generated, that can be used by robots for localization and navigation.
The IFC building information is hereby as good as possible embedded
in the URDF model and available for use. The amount of available
information is then limited to the amount of data that managed to be
transferred from the IFC file to the URDF file. In the case of Karimi
et al. [36], a similar integration between BIM and ROS is targeted,
including also Geospatial Information System (GIS) data. Karimi et al.
[36] aim for interoperability between BIM, GIS, and ROS, and rely
on semantic web technologies to achieve it. Namely, a novel Building
Information Robotic System (BIRS) ontology is developed, and data is
transferred from BIM models to ROS. This is mainly achieved eventually
by creating an XML file that contains the needed information for the
topological map (grid map). From within this XML file, a connection
can be made to the RDF graph of the building model to retrieve more
contextual information.

1.3.4. Overview of data transfer routines
The current study is most similar to the work of Karimi et al.

[36], in the sense that it targets the same connection between robot
and live BIM data, including the creation of a topological grid map
(metric and semantic), and aims to maintain a reference to live building
data. However, the works by Kim et al. [34], Kim and Peavy [35],
and Karimi et al. [36] also clearly show that several data transfer
routines are available; and the methods explained and used in these
works are not the only available ones. In fact, the data transfer method
used in Kim et al. [34] and Kim and Peavy [35] is limited to a file
translation service from IFC to URDF, leaving out further connections
at that point. The work by Karimi et al. [36] relies significantly on a
custom-built ontology, instead of using state of the art vocabularies
for building data, and the data transfer method relies on Dynamo
scripting and custom scripting to an XML file, which both generate
3

significant limitations in further use and overall scalability. Hence, the
current study extends these works by investigating also alternative data
transfer routines instead of relying on just one data transfer method. As
several data transfer routines are possible, it is relevant to find the data
transfer method that has high enough speed, completeness, potential
and ease of use. In that regard, the current study aims to investigate
the use of BIM data that is present for existing buildings (e.g. also to
support smart building use cases — see) also for the case of robotic
navigation. In particular, the current paper will investigate the works
on the OWL ontology for IFC [37], JSON versions of IFC2,3 [31], Linked

uilding Data (LBD) graphs, IndoorGML4 [38] and other web-oriented
ormats [31], such as JSON-LD [39].

.4. Scope and outline

In this article, the outlined building data models are investigated for
heir potential to enhance robot localization and navigation, including
vailable data transfer routines. We will hereby scope almost entirely
n the data formats and flows that can be followed to exchange data
rom a BIM model to a navigating robot. This investigation hereby
ocuses on finding those data transfer routines and those data models
hat achieve (1) feasibility, (2) scalability, (3) extensibility at robot
untime, and (4) reliability. These criteria are inspired by the current
ituation in research and industry as explained above, and they will be
eveloped in more detail in a requirements and criteria section (start
f Section 3 and Section 3.4).

After a short literature study in Section 2, including a number of
eference formats and approaches often used for robot navigation, we
utline the most promising methodologies available to stream data
rom BIM models to robots, and we include a number of reference
riteria (Section 3). In Section 4, we evaluate the most promising of
hese data flow mechanisms, from BIM software to robot, using an
xample university building at Eindhoven University of Technology.
ach of these data flow mechanisms is evaluated against the available
riteria in Section 5. Conclusions and future work findings are outlined
n Section 6.

. State of the art for robot world models and BIM

.1. Robot navigation

.1.1. Pose estimation
The term ‘navigation’ refers to a combination of localization and

otion planning. Both aspects have been extensively researched both
n isolation and as combined navigation stacks. Localization is concerned

with determining the pose of the robot in a map, based on both
eometric environmental data from the robot’s sensors and ego-motion
ensor data from inertial measurement units (IMU) or wheel encoder
dometry. A distinction can be made between global methods that do
ot rely on an accurate initial pose estimate and tracking methods that
o. We focus on the latter, assuming that an estimate is available (see
ntroduction).

Many successful localization methods employ a probabilistic ap-
roach to deal with the inherent uncertainty in the sensor data, map
nd ego-motion estimated [40]. An overview of common methods is
iven in Panigrahi and Bisoy [41]. Two popular classes of methods
re scan matching methods that determine the local pose difference that
ligns the sensor data to the map, and particle filters, that use a set of
eighted particles to represent a probability distribution over the robot
ose.

2 https://github.com/buildingSMART/ifcJSON
3 https://ifcjs.github.io/info/
4
 https://www.indoorgml.net/

https://github.com/buildingSMART/ifcJSON
https://ifcjs.github.io/info/
https://www.indoorgml.net/
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2.1.2. World representations
Both localization methods can be used with various world rep-

resentations. Cell decomposition methods, such as occupancy grid
maps [42], are a popular world modelling choice, providing a grid
of free and occupied space. The data formats to represent grid maps
depend on the implementation choices of the navigation algorithm at
hand. A popular representation is a multi-dimensional array in which
each element of the array represents a cell of the grid map and the value
assigned to the element it represents. This value typically captures the
status of the cell, e.g., ‘occupied’ or ‘free’ when the map is binary.

These grid maps also connect easily to motion planners, that can
plan a global path through free space. For this purpose, the grid map
is transformed into a graph where each cell represents a node. Edges
connect nodes representing cells that are adjacent to each other. The
computed global path (i.e. the sequence of cells to visit) is then used
as input for a local planner that is concerned with following the path
while avoiding local obstacles. World models for local planners rely
on cost maps which are a form of grid maps in which cell values are
updated dynamically based on sensory inputs. In practice, each element
of the array representing the grid map can have different discrete values
representing, for example, free space, occupied space, space not yet
perceived, etc. An overview of motion planning methods can be found
in Elbanhawi and Simic [43] and Patle et al. [10].

2.1.3. From SLAM-generated maps to semantic maps
The creation of these grid maps for robot navigation is often

achieved by the application of SLAM methods. The robot is often
tele-operated to explore an unknown environment. While moving,
subsequent sensors’ scans (e.g., from onboard LiDaR scanners) are
read and overlaid with each other to incrementally create the contour
of the environment and its objects. The overlaid contours can then
easily be converted to a grid map. Popular implementations of SLAM
algorithms are Cartographer [44], GMapping [45] and HectorSlam [46]
(see Yagfarov et al. [6] for a comparative study).

Note that maps created with state-of-the-art SLAM methods are of
a geometric nature only, because they represent, in a discretized way,
the contour of the (building) elements of an environment with little to
no semantic details. Creating such maps based on BIM data in principle
only requires computing where geometry is present, and where it is not
present, to then create the required matrix of grid cells. In a search for
semantically contextualized maps, adding semantics to these maps is a
very active area of research (see Sections 1.2.1 and 1.2.2).

For both localization and navigation, the possibility of generating
reliable semantic detections from point clouds and cameras using con-
volutional neural networks (CNN) has recently led to much original
research on this topic [47]. Semantics can be used both for making
detections and map associations more robustly (e.g., Himstedt and
Maehle [48]), and for configuring or changing the behaviour of the
robot based on semantic knowledge [13]. For example, semantic repre-
sentations make interactions with human operators for navigation tasks
much easier (e.g., ‘‘go to room 6’’), while taking semantics into account
during motion (e.g., steer away from glass and doors for safety).

A distinction can be made between (1) methods that merely label
geometric sensor or occupancy data and (2) object-oriented methods
that represent instances and their semantic relations. The former can be
achieved using computer vision and semantic segmentation methods,
yet the outcome is labelled data rather than semantically meaningful
and interconnected data. The added value of this approach is therefore
limited. The point of the latter is that such semantically rich data
sets become available and can be queried at will. BIM models can
be used as a source for this geometric-semantic instance knowledge,
without relying on sensors to reliably perceive it (computer vision,
object detection, semantic segmentation).

Semantic maps still need to align to geometric maps, in our case
grid maps, in order to be of use for robot navigation. Robot localization
4

and navigation namely starts from the match between sensory data
(e.g. LiDaR data) and this grid map. Only in a second stage, further
semantic data can be consulted, starting from the grid map identifier.
Features in this grid map thus need to be related to features in the
semantic model. This is also the method followed by Karimi et al. [36],
for example, which allows querying building data after it is recognized
on the grid map.

2.2. BIM-based building data

BIM data is most typically available in IFC format. Although this
data model is originally built using the EXPRESS information modelling
language [49], it is now built mainly using a Unified Modelling Lan-
guage (UML) Class Diagram.5 The resulting UML diagram can be used
o generate EXPRESS schema, XSD schema, JSON schema, and OWL
ntology. Further to the IFC approach, other data modelling approaches
or building data are available. This includes primarily the Linked
uilding Data (LBD) approach [23,25–28] and Smart Buildings data
odels [24,29,30]. The below sections document these approaches one

y one, while more information is available elsewhere [23]. We hereby
ocus specifically on the way in which they are able to represent semantic
features (walls, doors, rooms, windows, profiles, columns) together with a
2D or 3D geometric representation that can be used to create 2D or 3D grid
maps for localization and navigation purposes in an interactive manner.

.2.1. Industry Foundation Classes (IFC)
IFC is the most well-known standard in the AEC industry and allows

o define a building model fully in a number of formats, namely RDF,
PF, XML, and JSON. In all cases, the same UML diagram sits at the core
f the model. This leads to complete building models that represent all
D geometry, 2D geometry, object types, and object properties. The
PF version of IFC is the most prevalent and commonly supported
ersion of IFC. This is a data model based on STEP that can be accessed
hrough a number of parsers. The best option to parse an IFC-SPF file
s to use the Standard Data Access Interface (SDAI) library that comes
ith the SPF and EXPRESS language.6 SDAI connects mainly with C
nd C++ libraries and is not that commonly used in the AEC industry
oftware. An alternative often used library to access IFC-SPF data is the
fcOpenShell library that is available in C++ and has a Python binding.7

Other custom IFC parsers are available as well.
Next to the SPF version of IFC, commonly available formats are

JSON, XML, and RDF. The RDF format for IFC has been standardized
into the ifcOWL ontology, that is regularly available.8 It has been
shown, however, that the choices made in creating this OWL ontology
for IFC have lead to verbose RDF graphs that have plenty of content that
is not commonly used or easily usable (e.g. geometry and ordered lists
in general [50,51]). Nevertheless, IFC-RDF data can readily be queried
using the SPARQL9 query language [52] and it can be parsed easily in
one of the diverse RDF coding libraries available (e.g. rdflib, dotnetrdf,
Jena, RedLand RDF, rdf.js, etc.).

The XML version of IFC has been standardized long time ago, and
this has lead to an XSD schema10 that can be used to validate ifcXML
files and structure them in an agreed form. In practice, many ifcXML
files, however, diverge from this standard XML format, and make them
unpredictable and then difficult to parse or query [31], no matter
how many XML libraries are available. The JSON version of IFC has
no standardized format. A number of different JSON encodings are
available, sometimes aiming to cover the entire schema (e.g. ifcJSON11)

5 https://github.com/buildingSMART/IFC4.3.x-development
6 https://www.steptools.com/stds/step/sdai.html
7 https://ifcopenshell.org/
8 https://standards.buildingsmart.org/IFC/DEV/IFC4/ADD2_TC1/OWL
9 https://www.w3.org/TR/sparql11-query/

10 https://technical.buildingsmart.org/standards/ifc/ifc-schema-
pecifications/
11
 https://github.com/buildingSMART/ifcJSON

https://github.com/buildingSMART/IFC4.3.x-development
https://www.steptools.com/stds/step/sdai.html
https://ifcopenshell.org/
https://standards.buildingsmart.org/IFC/DEV/IFC4/ADD2_TC1/OWL
https://www.w3.org/TR/sparql11-query/
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/
https://github.com/buildingSMART/ifcJSON
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while others are covering specific parts (e.g. IFC.js12). Some JSON files
ollow a full tree structure (e.g. Listing 1, snippet from buildingSMART
fcJSON project13), while others focus much more on flat lists of objects.

1 {
2 "type": "IfcDistributionPort",
3 "globalId": "1f45e60b-c79b-4422-977b-82adb1b73462",
4 "ownerHistory": {
5 "type": "IfcOwnerHistory",
6 "ref": "e4980768-d888-49ec-8297-0968dbd994ca"
7 },
8 "name": "Inlet",
9 "objectPlacement": {
0 "type": "IfcLocalPlacement",
1 "placementRelTo": {
2 "type": "IfcLocalPlacement",
3 "relativePlacement": {
4 "type": "IfcAxis2Placement3D",
5 "location": {
6 "type": "IfcCartesianPoint",
7 "coordinates": [
8 0.0,
9 0.0,
0 0.0
1 ]
2 }
3 }
4 },
5 "relativePlacement": {
6 "type": "IfcAxis2Placement3D",
7 "location": {
8 "type": "IfcCartesianPoint",
9 "coordinates": [
0 12.0,
1 12.0,
2 4.0
3 ]
4 }
5 }
6 },
7 "flowDirection": "SINK",
8 "predefinedType": "DUCT",
9 "systemType": "AIRCONDITIONING",
0 "nests": [
1 {
2 "type": "IfcRelNests",
3 "ref": "d295c148-65ff-4aa4-82ed-726e36ee8946"
4 }
5 ],
6 "connectedFrom": [
7 {
8 "type": "IfcRelConnectsPorts",
9 "ref": "229fc988-e700-418c-93f0-52150398730e"
0 }
1 ]
2 },

Listing 1: An inlet distribution port in ifcJSON

.2.2. Linked Building Data (LBD)
Linked Building Data (LBD) can be defined as sets of domain-specific

DF graphs that together form one large graph representing a piece of
uilt infrastructure, e.g. a building. While an LBD graph can contain
on-RDF data, it is usually understood to have primarily RDF data. The
ocabularies governing these LBD graphs are built and standardized
nder the Linked Building Data Community Group of the World Wide
eb Consortium (W3C) initiative.14 This initiative started to a large

extent from the ambition to make data like the IFC natively available

12 https://ifcjs.github.io/info/
13 https://github.com/buildingSMART/ifcJSON/blob/master/Samples/IFC_
.0/BuildingSMARTSpec/air-terminal-element.json
14 https://www.w3.org/community/lbd/
5

in RDF and OWL, while still leading to high-quality RDF graphs. The
main ambitions here were to create a set of modular, interlinked, simple
enough, and extensible ontologies. This has lead to an ecosystem of
ontologies [27], including the BOT ontology,15 OPM ontology,16 BEO17

and MEP18 ontologies, and so forth, which can together be used to
represent building data. The example in Listing 2 shows how a building
and an air terminal can be expressed in an LBD-compliant RDF graph.
1 inst:building_326
2 a bot:Building ;
3 bot:hasGuid "6d313a7d-0bf7-4f08-947f-80599436ab30"^^xsd:

string ;
4 props:hasCompressedGuid "1jCJfz2$TF29H$W5cKDgim"^^xsd:

string .
5
6 inst:airTerminal_331
7 a bot:Element ;
8 a mep:AirTerminal__DIFFUSER ;
9 bot:hasGuid "703c0f93-955f-4bdc-a8c0-41e62f30f3bb"^^xsd:

string ;
0 props:hasCompressedGuid "1mF0_JbLzBtAZ0GUOlCFEx"^^xsd:

string ;
1 props:tag ""^^xsd:string ;
2 props:modelReference "1234"^^xsd:string ;
3 props:modelLabel "Ceiling Diffuser"^^xsd:string ;
4 props:manufacturer "Acme"^^xsd:string ;
5 props:productionYear "2011"^^xsd:string ;

Listing 2: A building and air terminal in TTL.

While converters are available to transform IFC-SPF files into LBD
graphs,19,20,21 the more interesting option consists of exporting LBD
data directly using a dedicated exporter script that can be embedded
as an add-in to software.22 Through those codes,23 it is in fact possible
to maintain a live database (triple store) with the LBD representation
of the building model while it is being modelled in BIM software like
Revit. To enable such functionality, one simply has to execute this
plugin at regular intervals (e.g. every minute) and send updates to
an underlying live database in the common data environment of the
engineering firm [53]. While this is no standard practice, it is possible
and this can lead to a live digital twin that is accessible through
available database interfaces (e.g. SPARQL endpoint, or an API with
access control) - see for example [33]. Finally, LBD data sets can
be created from scratch as well, using custom or generally available
software, e.g. Python + rdflib + OntoText GraphDB, something that is
much more difficult with a single ifcOWL ontology because of the large
complexity and large number of constraints that needs to be met to be
compliant with the IFC standard. This is one of the several reasons why
the use of more modular LBD graphs is recommended over aiming to
build ifcOWL graphs [23,27,28,53,54].

2.2.3. Smart buildings data models
In addition to IFC and LBD data, recent smart buildings research

has looked into a number of representation schemas as well. This
includes RealEstateCore (REC), BRICK, Haystack, SAREF, to name the
most prevalent ones. Most of these schemas or vocabularies focus on the
representation of objects, building topology, and properties of objects,
and lack a concrete approach for the representation of geometry,
because such detailed geometry is of less importance in smart buildings.

15 https://w3c-lbd-cg.github.io/bot/
16 https://w3c-lbd-cg.github.io/opm/
17 https://pi.pauwel.be/voc/buildingelement
18 https://pi.pauwel.be/voc/distributionelement
19 https://github.com/jyrkioraskari/IFCtoLBD
20 https://github.com/pipauwel/IFCtoLBD
21 https://kgg.openmetrics.eu/
22 https://github.com/MadsHolten/revit-bot-exporter
23
 https://github.com/w3c-lbd-cg/tools

https://ifcjs.github.io/info/
https://github.com/buildingSMART/ifcJSON/blob/master/Samples/IFC_4.0/BuildingSMARTSpec/air-terminal-element.json
https://github.com/buildingSMART/ifcJSON/blob/master/Samples/IFC_4.0/BuildingSMARTSpec/air-terminal-element.json
https://www.w3.org/community/lbd/
https://w3c-lbd-cg.github.io/bot/
https://w3c-lbd-cg.github.io/opm/
https://pi.pauwel.be/voc/buildingelement
https://pi.pauwel.be/voc/distributionelement
https://github.com/jyrkioraskari/IFCtoLBD
https://github.com/pipauwel/IFCtoLBD
https://kgg.openmetrics.eu/
https://github.com/MadsHolten/revit-bot-exporter
https://github.com/w3c-lbd-cg/tools
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As the representation of geometry is key in our work, however, we
leave these ontologies out of scope.

Data according to these other ontologies (BRICK, REC, etc.) can
nevertheless still be reached as part of the LBD data (see also Fierro
and Pauwels [55]). LBD is in principle a network of connected data,
that makes use of multiple ontologies. The LBD data could in addition
to a BOT, BPO, MEP, and BEO classification, also include a REC, BRICK,
SAREF or Haystack classification. This was tested with SAREF and
SSN in Schneider et al. [27], and is perfectly feasible as long as there
are no conflicting semantics or conflicting statements. Other examples
are available as well, such as Mavrokapnidis et al. [33] and Chamari
et al. [22]. In other words, the engineer and engineering software need
to follow a clear data representation strategy that avoids conflicting
statements. As of this point, we assume that an LBD representation of
the building can easily be enriched with data according to REC, BRICK,
Haystack, and SAREF ontologies, and smart buildings data can hence
be easily connected as well.

3. Method for evaluating data flows from BIM to robot

Based on the above literature overview, the overall context of smart
buildings, robots in slightly dynamic environments, and the promising
availability of web-oriented representations of building data [31], this
section looks into the use of that data. In principle, this article does not
consider any use case to be out of scope. Potential use cases for robot
navigation could be maintenance and inspection robots, last mile deliv-
ery robots, and robots navigation hospitals for delivery and support (see
introduction). Although it is possible to target robots on construction
sites (e.g. Kim et al. [56]), we specifically assume existing buildings
for which a BIM model is available after the as-built handover phase.
Specifically, our experiments are performed with the same dataset that
was also used for the smart building research in Chamari et al. [22]. In
Sections 5 and 6, a discussion will be included on the applicability of
the results in practical end-user environments.

Data transfer from a BIM environment to a robot can occur in a
number of methods, and they can be categorized according to a number
of characteristics, as shown below.

1. Scope of standardization — broad or narrow:
Data transfer always needs to follow certain agreements and
guidelines. The wider the support for such agreement is, the
wider the scope of standardization, the more scalable and fea-
sible the data transfer method.

2. Information transfer — many or few transformation operations:
Initial data transfer from BIM model to robot often involves data
transformation operations. The more numerous and more signif-
icant these transformations are, the less feasible and scalable the
method becomes.

3. Dependencies — software-neutral or software-specific:
Data transfer is tied into existing software and therefore software-
dependent, or it is software-neutral and therefore further away
from the designer interface. This has impact on feasibility of the
transfer method.

4. Extensibility at run-time — limited or extensible:
Data transfer leads to certain data being available at runtime. In
certain cases, this remains limited to data that was transferred
(no backward connection or query access — limited); in other
cases, a large set of further semantic data can potentially be
obtained (extensible).

5. Reliability — outdated or up-to-date:
As soon as data is transferred, it needs to be kept up to date, both
the geometry in the grid maps and the associated semantics. This
can be achieved in a number of ways, for example by keeping
in sync with an updated BIM model, by having access to the live
status of the building, or similar.
6

These characteristics define to what extent certain objectives can
be achieved. Several objectives were defined in the introduction of this
article, namely the achievement of (1) feasibility, (2) scalability, (3)
extensibility at robot runtime, and (4) reliability. These criteria can
be achieved by choosing the data transfer method with best matching
characteristics, in our case primarily broad standardization scope, few
data transformation operations, software-neutral dependencies, extensible at
run-time, and up-to-date.

In the following, we list three mainstream approaches that could
be identified as most promising based on the literature study in Sec-
tion 2.2. For each of these transfer methods, a number of approaches
is available with more fine-grained decisions and options. They will be
briefly presented here, after which the most promising approaches will
be tested in more detail in Section 4.

3.1. Transfer method 1: Traditional IFC-based file transfer

A first transfer method (TM1) that can easily be extracted from
the list of available data handling routines is the use of the Industry
Foundation Classes (IFC). This approach has a number of alternatives.

3.1.1. SPF and MVDs (TM1.1)
The standard recommended approach in this case, is to define a

Model View Definition24 (MVD) that scopes a part of the larger IFC
schema to the applicable use case. This can be done using the mvdXML
format, after which dedicated software development needs to take
place in order to allow BIM software to export data according to that
MVD. In practice, this has lead to the implementation of a number of
standard MVDs in native BIM software, namely the Reference View
(RV), Coordination View (CV), and Design Transfer View (DTV). It
is not clear how alternative custom MVDs need to be implemented
other than writing a new plug-in into software or manually tweaking
some of the parameters in the pre-implemented MVDs [54]. No reliable
exporters are available in native software for the XML, JSON, or RDF
versions of IFC. An XML export option is available in some cases, yet
follows very different XSD schemas and export flavours, leading to no
reliable export option. Therefore, the result is always an IFC file in the
STEP Physical File format (SPF).

As a result, this approach needs to rely on dedicated procedural code
and parsers for an import by a robot. This dedicated procedural code
could rely on the IfcOpenShell25 library (C++ or Python), which is one
of the most commonly used libraries for that purpose. Other dedicated
software can be used, such as Blender, to load in any case the geometry
and object identifiers, and transfer the geometric representation to the
robot. In this case, it is advised to rely on a data transfer routine that
transforms the IFC file into a robot world model, such as URDF or SDF.
This data translation procedure is followed by Kim et al. [34] and Kim
and Peavy [35], leading to a usable robot world model for navigation
on construction sites. When relying on such a file-based operation, it
may prove to be useful to also adopt the BIM Collaboration Format
(BCF)26 to communicate issues with the BIM model from robot back to
BIM model.

This approach has a wide scope of standardization, as IFC is an
international standard. It includes relatively few data transformations:
standard IFC files are exchanged between BIM model and robot and
typically require a direct manual data transfer [34,35]. This approach
is software-neutral, as the IFC format can be generated and used by
any BIM tool, and does not depend directly on specific software. Note
that the quality of the IFC model does depend on the software used, as
well as modelling practices and export settings. Finally, the end result

24 https://technical.buildingsmart.org/standards/ifc/mvd/
25 https://ifcopenshell.org/
26 https://www.buildingsmart.org/standards/bsi-standards/bim-

collaboration-format-bcf/

https://technical.buildingsmart.org/standards/ifc/mvd/
https://ifcopenshell.org/
https://www.buildingsmart.org/standards/bsi-standards/bim-collaboration-format-bcf/
https://www.buildingsmart.org/standards/bsi-standards/bim-collaboration-format-bcf/
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does not have high extensibility at robot-runtime, as the resulting robot
world model is fully included into ROS without backlinks to the original
model. This also makes that the robot world model becomes outdated
easily.

3.1.2. IFC-RDF (TM1.2)
For the RDF version of IFC, users are typically expected to use a

converter that converts the SPF version of the IFC file into an RDF
graph. This can then be loaded into a triplestore after which it can be
queried and/or parsed. In principle, this pipeline can be automated. It
would however be easier if this functionality could be made available
directly in BIM modelling tools, similar to the Open and Java Database
Connectivity (ODBC and JDBC) connections that are made available by
default for storing BIM data into a relational database.

The resulting RDF graph is typically large, as it includes all 3D
geometric data and all ordered list descriptions for all geometry [51],
which leads to lengthy descriptions that are difficult to use. Using
SPARQL queries, the RDF graph can be queried for useful information,
potentially using simplification rules [52,57], which can then be passed
on for robot navigation.

This approach has a broad scope of standardization, as the ifcOWL
ontology and corresponding RDF graphs are largely standardized. The
data transfer method typically requires more data transformations than
the previous method, several of which are more difficult. In this ap-
proach, the link to the original model is lost; namely, the user trans-
forms the data to IFC-SPF and then to IFC-RDF, and does not go back
to the original BIM model. Hence, the data becomes outdated quickly.
However, with the use of RDF graphs, links to external data sets can
easily be explored and exploited. Hence, a medium level of extensibility
is achieved at robot run-time with this method. This approach is
software-neutral.

3.1.3. JSON (TM1.3)
The JSON version of IFC can be used as well, although this is not

standardized. Relying on JSON would make sense, because JSON is re-
garded as a promising data format in general, it is typically used by any
state of the art web service or platform, and it is highly compatible with
concurrent software libraries and development practices. Therefore, we
expect that JSON can also be an important data format to represent
and handle environmental description data by the robot, and the level
of interoperability towards the robot is thus expected to be higher. For
this data flow, it is possible again to rely on a converter that converts
the SPF version of the IFC file into a JSON file.27

Several converters are available, some of which are embedded in
xisting tools. For example, it is possible to obtain a JSON represen-
ation of the building geometry by loading the IFC data into Blender
nd exporting it again into JSON format. However, by passing through
lender, lots of the semantics available in the IFC file are lost and need
o be retrieved elsewhere. Similarly, one could rely on the IFC.js library
o parse an IFC file and obtain the model in JavaScript objects (JSON).
n this case, however, it is less clear how connections need to be made
o the actual 3D geometry, which is less easily accessible in the IFC.js
ibrary.

This JSON transformation pipeline is promising, because of the
igh level of re-usability for robot navigation. The JSON format easily
atches the input and output formats of many Python-based libraries
sed for robot navigation and localization (e.g. OpenCV, scikit, numpy,
andas, tensorflow). This makes this approach very extensible at run-
ime, albeit mainly with computed data (less linked data or databases).
his approach has a narrow scope of standardization: only few small
roups have made agreements on the JSON format for IFC, and those
an only be used within those groups. The data transfer method re-
uires a considerable number of data transformations, using any of a

27 https://github.com/buildingSMART/ifcJSON/tree/master/file_converters
7

number of converters, making this routine less scalable and less reli-
able. A continuous workflow should nevertheless be reachable in JSON,
and this would be a very valuable workflow. However, at the moment,
the connection with an original BIM model is typically lost, and there is
a considerable risk that semantic and geometric data becomes outdated.
This transfer method is furthermore software-specific, as the JSON file
format of IFC depends entirely on the tools that generate the data.

3.2. Transfer method 2: Live linked data server

A second transfer method relies on a live linked data server. With
the term linked data, we here refer directly to ‘RDF graphs’. We here
consider two transfer methods, namely using an IFC server (IFC-RDF -
TM2.1) and using an LBD server (TM2.2).

3.2.1. IFC server (TM2.1)
A linked data server that hosts IFC data refers to the use of a triple

store (graph database) to host IFC data in RDF format. If such a transfer
method is followed, then the earlier mentioned converters need to be
used, from IFC to RDF. As indicated, these converters are currently
typically used in a file-based approach, yet is also possible to automate
the transfer from IFC to RDF in the backend of a server (only IFC needs
to be uploaded). The resulting RDF graph is assumed to be stored in a
triple store, as opposed to TM 1.2 that relies on RDF files.

As this approach remains close to IFC itself, there is a broadly
accepted level of standardization in this approach. Furthermore, this
transfer method requires few data transformations, most of which can
be automated and do not require manual interventions. This method
is also software-neutral and relatively extensible. Extensions can in
principle easily be made, as the RDF triple store with IFC data can
be extended with additional custom data (e.g. smart building data in
BRICK). However, the reliance on the IFC data model as a main data
format reduces the level of modularity and ease of extensibility. Finally,
the reliability of the data can be quite high, on the condition that the
data on the IFC server is kept up to date. As it is relatively hard to
keep IFC-RDF data up to date, due to the several file transformations,
this point of reliability does not score very high — data will be difficult
to be kept up to date.

3.2.2. LBD server (TM2.2)
Alternative to TM2.1, which is close to TM1.1 and TM1.2, this

Transfer Method TM2.2 limits entirely on the use of LBD data (RDF
graphs). BIM model data is hereby directly converted into LBD graphs,
and those are inserted into RDF-based triple stores (e.g. graphDB). Data
can then be accessed using the API, or the open SPARQL endpoint of
the triple store.

The level of standardization is less broad compared to previous IFC-
based approaches, as IFC is an accepted ISO standard and industry
standard, while LBD graphs are only as standard as their schema
(ontology) dictates. There exists no formal ISO, CEN or W3C standard
that endorses LBD graphs as an accepted standard. Nevertheless, the
ontologies define how the data is to be used and there exists an
informal agreement among communities about these ontologies. The
number of data transformations is limited, and similar to the number
of transformations needed in TM2.1, yet, several routines are available
as there are several ways available to obtain an LBD graph. Hence,
this number of data transformation steps could be improved. The
procedure is software-neutral, as LBD graphs can be obtained starting
from any software, also from scratch. This transfer method is also easily
extensible: it is easy to expand the graph with additional data that may
be obtained by the robot, for example. In fact, extensibility is a key
feature of (modular) LBD graphs. Finally, it is quite easy to keep the
modular LBD graphs up-to-date, as they are server-based, and can be

updated via several routines.

https://github.com/buildingSMART/ifcJSON/tree/master/file_converters
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Table 1
Key characteristics of diverse data transfer methods.

Standardization Transfer steps Dependencies Extensibility Reliability

Traditional IFC-based file transfer

TM1.1 - SPF and MVDs Broad Few Software-neutral Limited Outdated
TM1.2 - IFC-RDF File transfer Broad Many Software-neutral Medium Outdated
TM1.3 - IFC-JSON File transfer Narrow Many Software-dependent High Outdated

Live Linked Data Server

TM2.1 - IFC Server Broad Few Software-neutral Medium Outdated
TM2.2 - LBD Server Medium Medium Software-neutral High Up-to-date

JSON-based web services

TM3.1 - Retrieve web-based JSON data Narrow Few Software-neutral High Up-to-date
TM3.2 - Connection to live web-based API Narrow Few Software-dependent High Up-to-date
d
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3.3. Transfer method 3: JSON-based web services

The third group of transfer methods, from BIM model to robot, is
equally web-based as the linked data server approaches in TM2. In this
case, the transfer method relies on JSON-based web services instead of
RDF content. These are similar to TM1.3 and TM2.1 (IFC server), with
the difference here that the below methods are explicitly relying on
web services with JSON communication from which navigation maps
are created and used in operation.

3.3.1. Retrieve web-based JSON data (TM3.1)
Transfer Method 3.1 includes a web server that returns JSON data

of the BIM model. In that sense, it is very similar to TM1.3 and TM2.1.
A custom server is built that responds to HTTP requests using dedicated
snippets of JSON that can be consumed by the robot in the creation and
updating of grid maps and their related semantics. For this method,
the level of standardization is narrow, although this depends on the
type of JSON data that is used and what its level of standardization
is. In a custom web server, however, the JSON representation of the
BIM data is typically not standard (see for example diverse versions
of IFC-JSON, as well as the custom structure of IFC.JS). The number
of data transformation steps is few, and they are mostly included in
the web server and thus hidden for an end user. This transfer method
is software-neutral and highly extensible: it is easy to add more data.
Finally, the data is made available on a server, and can thus be assumed
to be kept up to date.

3.3.2. Connection to live web-based API (TM3.2)
This last approach relies on JSON-based data from a web-based API.

However, for TM3.2 it is assumed that this data comes straight from
the BIM environment. In other words, in this transfer method from
BIM model to robot, the idea is that the robot communicates directly
to the web-based JSON-based API of the BIM tool(s). This could for
example be a Forge-based API.28 Alternatively, the robot could also
connect directly with a Speckle stream29 or similar. The data is hereby
assumed to be not IFC-based, as it is available directly from the BIM
tool.

As a direct connection is made with software, this approach is not
software-neutral, but rather software-dependent. The number of data
transformations is very small, because this relies only on a direct com-
munication with existing BIM tools via their APIs — no considerable
user interaction needed. The level of standardization is very narrow,
namely, the data is as standardized as the API of the software that is
used for communication. The data is easily extensible, as the robot can
combine the data easily with data from other web services. And finally,
data can be assumed to be kept up to date, as a live connection is
maintained with the latest status of the BIM model. One shortcoming
here is that these updates need to come in via the BIM software and
thus are less easy to make.

28 https://forge.autodesk.com/
29 https://speckle.systems/
8
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3.4. Requirement analysis and criteria

As a conclusion or summary to the above section, the main charac-
teristics of the diverse transfer methods are summarized in Table 1.
In order to choose for the most appropriate of the above outlined
transfer methods, a number of criteria had been specified earlier in
the article. Namely, in consideration of an increasingly data-driven and
connected world, our targets were: broad standardization scope, few data
transformation operations, software-neutral dependencies, extensible at run-
time, and up-to-date data. In the case of robot localization and navigation
in existing buildings, further expected requirements are:

1. The data represented by the BIM model needs to be spatially
accurate.

2. The robot needs to have semantic knowledge of spaces and con-
necting interfaces (e.g., rooms, areas and doors).

3. The robot needs to be aware of material properties and the
relation to its sensing capabilities (e.g. glass)

4. The robot needs to be able to query this data efficiently (real time)
during operation, through an abstracted programming or query
interface.

Considering these data requirements, most promising or significant
ata transfer methods are evaluated to be:

• TM2.2: LBD server
• TM3.1: Retrieve web-based JSON data

TM2.2 (LBD server) was picked as the better option over TM2.1, as
his mainly implies a better usable set of data (LBD instead of IFC-RDF).
M2.2 is therefore expected to be better extensible and also easier to
eep up to date. The second outstanding option is TM3.1, which is a
onnection to live web-based JSON representations of building data.
his is currently also the most costly one, as it requires setting up a
omplete web-based backend with web services that can be queried for
he right data. This is currently out of scope for implementation. As
n alternative, it was decided for this article to test the less expensive
M1.3, which also tests the quality of the JSON data, in the case of
FC-JSON. Doing this test also allows us to validate whether the direct
ransfer of JSON data via file-based operations (TM1.3) is sufficiently
easible as well.

. In-depth evaluation of data flows

Based on the above review, an experiment has been conducted for
he two main data transfer methods, from BIM model to Robot, that
ere found above (TM1.3 and TM2.2). In both cases, a number of

mplementation choices were made during implementation (choice of
ools and converters). Nevertheless, the implementation of these two
ata transfer methods suffices to get an indication of how promising
ach of these methods is.

In this section, an overview of those two implementation trajectories
ill be explained for one reference building, namely floor 8 and 9 of the

https://forge.autodesk.com/
https://speckle.systems/
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Fig. 1. The Atlas university building.

Atlas building in the campus of TU Eindhoven (Fig. 1). In this context,
we use the following definitions for a number of key terms, namely
spaces, interfaces and elements. These definitions are inspired by (but
not identical to) their definitions as part of the BOT ontology.

• Space30: an empty area that is available for use, and that is
bounded by either physical or virtual boundaries

• Interface31: a generic concept to qualify the relationship of two
or more things in the world, where at least one is a building
element or zone. We limit our interpretation here by considering
the interface the relationship between a space and a bounding
(virtual or physical) element.

• Element32: a construction entity with a characteristic technical
function, form or position.

4.1. Route 1 - IFC-JSON file transfer

This route has a considerable number of file conversion and transfer
operations, from BIM model all the way to the robot. First, the BIM
model is transformed into a JSON dataset. Two alternative routes are
possible, namely a conversion routine via IFC-JSON transformers, and a
conversion routine via Blender SPF-import and JSON-export. We only
implemented the IFC-JSON transformer. After the JSON content was
created, it was transformed into JSON-LD, which can be used to build
a 2D vector map for robot navigation (PNG). Finally, robot navigation
takes place. The steps to convert the data from IFC to a JSON-LD
property graph used for robot localization as described in Hendrikx
et al. [58] are reported in Fig. 2.

4.1.1. Transformation to JSON dataset using ifcJSON converters
The original model for the Atlas building is available in Autodesk

Revit. This BIM model has been exported into an IFC file representation.
At the time of writing, two alternative converters were available to
transform this IFC data into a JSON format, namely the transformer
that is part of the IFC.JAVA project,33 and a Python-based transformer
from the IFC-JSON team.34 The IFC.JAVA project is an object model
of the IFC classes that has default Jackson (de-)serializers embedded
in the code for parsing and generating IFC as XML and JSON. This
converter (IFC.JAVA) follows the transformation mechanisms of this
Jackson serialiser. This leads to an IFC-JSON snippet as shown in
Listing 3.

30 https://w3c-lbd-cg.github.io/bot#Space
31 https://w3c-lbd-cg.github.io/bot#Interface
32 https://w3c-lbd-cg.github.io/bot#Element
33 https://github.com/pipauwel/IFC.JAVA
34 https://github.com/buildingSMART/ifcJSON/tree/master/file_converters
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1 "type" :"IfcSpace",
2 "globalId" :"15c75cfb-4a4e-404f-812a-77c1d3c20367",
3 "ownerHistory" :"870e941a-e5b0-48d7-acff-58c01e10d40c",
4 "name" :"81",
5 "isDefinedBy" :[... ],
6 "objectPlacement" :{... },
7 "representation" :{... },
8 "longName" :"Room",
9 "compositionType" :"ELEMENT",
0 "predefinedType" :"SPACE",
1 "elevationWithFlooring" :0.0,
2 "boundedBy" :[{
3 "type" :"IfcRelSpaceBoundary",
4 "globalId" :"c1b1eb78-3e1d-4363-a7e9-9d74cfd416a5",
5 "ownerHistory" :"870e941a-e5b0-48d7-acff-58c01e10d40c",
6 "name" :"1stLevel",
7 "relatingSpace" :"15c75cfb-4a4e-404f-812a-77c1d3c20367",
8 "relatedBuildingElement" :{
9 "type" :"IfcWall",
0 "globalId" :"ff562d90-dab8-4c2e-9947-0f26d97ec225",
1 "ownerHistory" :"870e941a-e5b0-48d7-acff-58c01e10d40c"

,
2 "name" :"Basic Wall:Internal wall 1000mm:546521",
3 "hasAssociations" :[... ],
4 "objectType" :"Basic Wall:Internal wall 1000mm:397192",
5 "isTypedBy" :[... ],
6 "isDefinedBy" :[... ],
7 "objectPlacement" :{
8 "type" :"IfcLocalPlacement",
9 "globalId" :"48ebf639-8da0-46b4-b819-868057b619fe"

,
0 "placementRelTo" :"6bd92362-5467-4606-b970-4cbdc29

d163b",
1 "relativePlacement" :{
2 "type" :"IfcAxis2Placement3D",
3 "location" :{
4 "type" :"IfcCartesianPoint",
5 "coordinates" :[200.460100211374, -62.187650442

1825, 0.0 ]
6 },
7 "axis" :{
8 "type" :"IfcDirection",
9 "directionRatios" :[0.0, 0.0, 1.0 ]
0 },
1 "refDirection" :{
2 "type" :"IfcDirection",
3 "directionRatios" :[-1.0, 0.0, 0.0 ]
4 }
5 }
6 },
7
8

Listing 3: The IFC.JSON snippet generated by the IFC.JAVA
library

4.1.2. Transformation into JSON-LD

JSON-LD is used by the localization algorithm in Hendrikx et al.
[58]. Building features are queried from the IFC-JSON graph structure
and explicitly linked to a footprint representation (e.g., lines and poly-
gons) in global coordinates. Within the resulting JSON-LD document,
the building features are linked to a representation that is marked as
sensor-specific, as shown in Listing 4. This snippet shows how one
of the columns in the building with tag 356071 has an additional
representation of type ObjectFeatureRepresentation. This rep-
resentation hosts a Polygon with in this case four (4) Points to mark the
four corners of the rectangular column footprint. These corners can be
perceived by the robot sensors.

https://w3c-lbd-cg.github.io/bot#Space
https://w3c-lbd-cg.github.io/bot#Interface
https://w3c-lbd-cg.github.io/bot#Element
https://github.com/pipauwel/IFC.JAVA
https://github.com/buildingSMART/ifcJSON/tree/master/file_converters
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Fig. 2. Conversion from the BIM model to the representation used by the robot, stored
in a database, as used in this work. This database contains both the property graph
entities and the geometric entities (using PostGIS).

1 {
2 "@id": "c71c8bf4-c687-4e71-88e9-85f39f04c6cd",
3 "@type": "IfcColumn",
4 "tag": "356071",
5 "represented_by": [
6 {
7 "@id": "07322913f44d4e2aa4ef13f78814c2f2",
8 "@type": "ObjectFeatureRepresentation",
9 "perceivable_by": {
0 "@id": "PlanarLidar2D"
1 },
2 "represented_by": [
3 {
4 "@id": "f8b364f1277943d0adff0e49f28d6924",
5 "@type": "Polygon",
6 "consists_off": [
7 {"@id": "021da27a2b9d4dfdb871dfdda9c4ec5e",
8 "@type": "Point"},
9 ....
0 ]
1 }
2 ]
3 }
4 ]
5 }

Listing 4: A JSON snippet, representing a column as perceived by
a planar laser scanner

4.1.3. Floor plan generation
From the JSON-LD property graph, it is possible to generate a geo-

metric vector map with annotated semantic features (see also Hendrikx
et al. [58]). A small section of the resulting map of a floor of the
building considered in this work is represented in Fig. 3. This geometric
map as well as its semantic features are directly generated from the BIM
model and therefore has the same geometric and semantic accuracy
as this BIM model. Any geometric flaws present in this BIM model
are maintained in the geometric map, which can be recognized by
navigating the robot through the real building. Validating semantic
mistakes in the BIM model (e.g. misclassifications) is more difficult, and
has not been considered any further in this work. Geometric accuracy
was validated qualitatively and visually by navigating through the
10

actual building (see Section 5).
Fig. 3. The map considered in [58], as generated from the BIM model, with static
features relevant for the LiDAR sensor. The features are annotated with the types of
the objects they represent. The three paths driven by the robot during validation are
also reported.

Fig. 4. Conversion from the BIM model to topological and metric maps following the
LBD Server route.

4.1.4. Localization
Localization is achieved by querying spatial features and their se-

mantic relations from the database using the well-known PostgreSQL
database with the PostGIS spatial extension. We store the JSON-LD
property graph representation in the database as well, making it pos-
sible to query for relations and entities using the SQL query language.
The database is queried for spatial features that are close to the robot.
The sensor type is part of the query, resulting in features that are part of
an ObjectFeatureRepresentation perceivable by the given sen-
sor. The query returns the feature id, feature type, object id and object
type for each feature, together with the spatial object that contains the
actual coordinate data structure. For example, a query for perceivable
features with a 2D LiDAR scanner near the current position, may return
the object {type:‘‘IfcColumn’’, id:‘‘96033e’’}, together
with its representation {type:‘‘Polygon’’, id:‘‘553236’’}.
This explicit symbolic link between the geometry, its interpretation and
the object is maintained in the association-based localization approach
described in detail by Hendrikx et al. [58].

4.2. Route 2 - LBD server

This route largely consists of three stages (Fig. 4). The first stage is
the stage in which a Revit plugin is developed using C#. The stage in
which the output of the Revit plugin is converted into a bitmap image
in PNG format is the second stage. The last stage is the actual robot
navigation.

So, for this route, an existing Revit-to-LBD exporter plugin was
expanded with additional functionality that enhances the output data
with required additional data, which were mainly geometry (e.g. space

boundaries for spaces) and specific object types (e.g. doors in curtain
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Fig. 5. The BIM model in Revit with the space boundaries for rooms 163, 33, and 41
shown.

walls). The resulting data is loaded into a triple store, namely On-
totext GraphDB.35 Using few defined scripts (described in de Koning
et al. [59]), required geometric and feature data can be retrieved
from this triple store (CSV output), and these results are used to
automatically generate a 2D floor plan that includes walls and doors
mainly together with a topological map that defines how spaces are
interconnected. From the 2D floor plan, a gridmap is generated which
indicates which cells are occupied by a structural element (e.g., wall or
window) and which cells are not occupied by a structural element.

4.2.1. Modified revit-to-LBD exporter
The Revit plug-in is developed using C#. The building elements of

the BIM model are collected and written to an RDF graph, namely a
Turtle (.ttl) file.36 The C# script consists of two parts: the first part
collects the building elements and the second part writes the Turtle file.
In this code, building elements are retrieved using standard C# code,
while the geometric data is added to the building elements by writing
the bot:interfaces and collecting the geometric information of
those interfaces. Those interfaces are the space boundaries between
rooms and their bounding elements like walls, doors and columns
(Fig. 5).

The interfaces of the columns and walls are collected by searching
for the bounding elements of a space and their specific category names
(column, wall). The 2D geometry of the space boundary between ele-
ment and space is available in the Revit API and can be used to encode
each interface(s) between a wall or column element and a space. Each
side of a column or wall generates one bot:interface, leading to
four distinct interfaces for each rectangular column with the space. The
geometry of the walls and columns can then be created by combining
the geometry encoded for each of these interfaces (rectangle).

The interfaces of the doors are collected differently, namely by
searching for inserts in the walls of type ‘door’. As these doors are em-
bedded in walls, their geometric data needs to be obtained differently.
For doors, instance geometry needs to be obtained, which includes a 2D
curve that encodes its start and end points. Listing 5 shows the code

35 https://graphdb.ontotext.com/
36 https://www.w3.org/TR/turtle/
11
that is used to write the geometry curves for doors. Note that these
curves are simple ‘lines’ in this particular case of doors; yet, both in
the Revit API and in the IFC models, the term ‘curve’ is used to refer
to this geometry. The ‘line’ element is a subtype of ‘curve’.

1 GeometryElement instanceGeometryElement = instance.
GetInstanceGeometry();

2 foreach (GeometryObject o in instanceGeometryElement)
3 {
4 // Try to find curves
5 Curve curve = o as Curve;
6 if (curve != null)
7 {
8 if (curve.GetEndPoint(0).X == curve.GetEndPoint(1).X

&& curve.GetEndPoint(0).Y == curve.GetEndPoint(1).Y
)

9 continue;
0
1 else
2 {
3 tString += NL + "inst:Interface_" +

interfaceCounter + NLT + "a bot:Interface ;" + NLT
+ "bot:interfaceOf " + "inst:room_" + room.Id.
ToString() + ", " + "inst:" + "door" + "_" + eli.Id.
ToString() + " ;";

4 tString += NLT + "fog:asSfa_v2-WKT \"LINESTRING (" +
(curve.GetEndPoint(0).X * 12* 25.4).ToString().
Replace(’,’, ’.’) + " " + (curve.GetEndPoint(0).Y
* 12* 25.4).ToString().Replace(’,’, ’.’) + ", " +
(curve.GetEndPoint(1).X * 12* 25.4).ToString().
Replace(’,’, ’.’) + " " + (curve.GetEndPoint(1).Y
* 12* 25.4).ToString().Replace(’,’, ’.’) + ")\" ."
+ NL;

5 }
6 interfaceCounter++;
7 }
8 }

Listing 5: C# code for retrieving door curves and outputting them
to an RDF graph

4.2.2. Output LBD graph
After running the custom Revit-to-LBD exporter, data is available

in a comprehensive RDF graph. This RDF graph relies on the prefixes
listed in Listing 6.

1 @prefix bot: <https://w3id.org/bot#> .
2 @prefix props: <https://w3id.org/props#> .
3 @prefix beo: <https://pi.pauwel.be/voc/buildingelement#> .
4 @prefix fog: <https://w3id.org/fog#> .
5 @prefix rdfs: <https://www.w3.org/2000/01/rdf-schema#> .
6 @prefix rvt: <https://example.org/rvt#> .
7 @prefix inst: <https://linkedbuildingdata.net/ifc/resources2

0200915_130453/> .

Listing 6: Namespaces and prefixes in the output TTL graph

The different building elements included in the RDF graph are
the rooms, the walls, the columns, the doors and the windows. All
those building elements are exported to the Turtle file (.ttl) with the
properties they have, ranging from the dimensions to the level of the
element. As can be seen in Listing 7, this representation also includes
the 2D geometric representation (line string) with exact coordinates
of the building element. Also the interfaces between two components
(e.g. room and wall) are stored, following the BOT ontology and
similarly including 2D geometry, allowing to find the areas where an

interface is constituted by doors that can be passed through.

https://graphdb.ontotext.com/
https://www.w3.org/TR/turtle/
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Fig. 6. Partial view of the generated 2D map of the 8th floor of the Atlas building.
Green (columns), red (doors), blue (walls).

1 inst:door_499701
2 a bot:Element ;
3 a beo:Door ;
4 props:number "499701" ;
5 props:TypeId "399499" ;
6 props:Category "Doors" ;
7 props:PhaseDemolished "None" ;
8 props:larguraporta "0.15" ;
9 props:SillHeight "0.00" ;
0 props:PhaseCreated "New Construction" ;
1 props:Category "Doors" ;
2 props:Type "Simple door" ;
3 props:relativeheight "1.98" ;
4 props:DesignOption "-1" ;
5 props:Family "Simple door" ;
6 props:FamilyandType "Simple door: Simple door" ;
7 props:Level "9th Floor" ;
8 props:Image "<None>" ;
9 props:Volume "0.03 m3" ;
0 props:HostId "498863" ;
1 props:HeadHeight "2.00" ;
2 props:Area "2 m2" ;
3 props:Level "9th Floor";
4 fog:asSfa_v2-WKT "LINESTRING (202550.100211374 82607.952094

0842, 202550.100211374 83607.9520940842)(202650.10021137
4 82607.9520940842, 202650.100211374 83607.9520940842)" .

5
6 inst:Interface_425
7 a bot:Interface ;
8 bot:interfaceOf inst:room_545656, inst:wall_363209 ;
9 fog:asSfa_v2-WKT "LINESTRING (211159.204694596 1341.7006532

0252, 211159.204694596 18291.7006532025)" .
0
1 inst:Interface_426
2 a bot:Interface ;
3 bot:interfaceOf inst:room_545656, inst:wall_511201 ;
4 fog:asSfa_v2-WKT "LINESTRING (211159.204694596 18291.700653

2025, 206359.204694596 18291.7006532025)" .

Listing 7: Building elements in output RDF graph

So, the geometric data of the elements are added as WKT linestrings
(see Section 2.2). Those linestrings are the coordinates of the two
points and those points are the start- and endpoint of the curve. So,
a line between the two points indicates the location of the interface
which means that different lines together form the circumference of the
building elements. For the walls, one interface is written per room and
the location of those walls are indicated with a line on the side with
which it adjoins the room. An exception to this are the walls that have
a wall perpendicular to it, those walls are written in two segments and
so, two linestrings. This follows the regular 2nd level space boundary
approach that is available also within IFC (more information in [60]).
The doors are written in two interfaces because the curves of the doors
are exported as one for the outer side of the door and one for the inner
side of the door. In this way, the geometric data of the different building
elements are exported as an RDF graph in Turtle format.

Also the relationships between different building elements are writ-
ten in the RDF graph (Listing 8). Those relationships are the re-
lationships between the walls and the related doors and windows
12
(bot:hasSubElement), and the relationships between the rooms
and their bounding elements like the walls and columns (bot:
adjacentElement). This follows the default LBD formats, ontologies
and agreements.
1 inst:wall_447042 bot:hasSubElement inst:door_780485 .
2 inst:wall_524398 bot:hasSubElement inst:door_780563 .
3 inst:wall_445683 bot:hasSubElement inst:door_780630 .
4 inst:wall_445683 bot:hasSubElement inst:door_780658 .
5 inst:wall_445683 bot:hasSubElement inst:door_780770 .
6 inst:room_543753 bot:adjacentElement inst:wall_491335 .
7 inst:room_543753 bot:adjacentElement inst:wall_512526 .
8 inst:room_543753 bot:adjacentElement inst:wall_491414 .
9 inst:room_543753 bot:adjacentElement inst:wall_491453 .
0 inst:room_543755 bot:adjacentElement inst:wall_491335 .
1 inst:room_543755 bot:adjacentElement inst:wall_491367 .

Listing 8: Relations included in the RDF graph between building
elements (snippet)

4.2.3. Information retrieval
In the second part of the code (creation of the PNG gridmap), several

software applications are used: GraphDB, Matplotlib and Python. A
SPARQL query allows to retrieve the required data to create a PNG map
(Listing 9). In this phase, the geometric data of the different elements
are collected and related to the right room of the building.
1 PREFIX props: <https://w3id.org/props#>
2 PREFIX bot: <https://w3id.org/bot#>
3 PREFIX beo: <https://pi.pauwel.be/voc/buildingelement#>
4 PREFIX fog: <https://w3id.org/fog#>
5
6 SELECT DISTINCT ?room ?WKTWall ?WKTDoor ?WKTColumn #

Determine which variable are shown
7 WHERE{
8 {
9 # Make sure that every room is a room
0 ?room props:Category "Rooms".
1 ?room props:Level "8th Floor".
2 # Find an interfaces which is both a bot:interfaceof of

a room and a wall
3 ?interface bot:interfaceOf ?room, ?object.
4 ?object a beo:Wall.
5 ?interface fog:asSfa_v2-WKT ?WKTWall.
6 }
7 # Find an interfaces which is both a bot:interfaceof of a

room and a door
8 UNION{
9 ?room props:Category "Rooms".
0 ?room props:Level "8th Floor".
1 ?interface2 bot:interfaceOf ?room, ?object2.
2 ?object2 a beo:Door.
3 ?interface2 fog:asSfa_v2-WKT ?WKTDoor.
4 }
5 UNION{
6 ?room props:Category "Rooms".
7 ?room props:Level "8th Floor".
8 ?interface2 bot:interfaceOf ?room, ?object3.
9 ?object3 a beo:Column.
0 ?interface2 fog:asSfa_v2-WKT ?WKTColumn.
1 }
2 }

Listing 9: SPARQL query that can be used to retrieve the required
geometric data to create a 2D floor plan

This query creates a table with four columns from which the first
column includes the URIs of the rooms of the BIM model. Those rooms
are related to the correct linestrings of the walls, doors and columns
which are included in the second to the fourth column of the table.
This data is then downloaded to a Comma-Separated Values (CSV) file
which is used as further input for the conversion of the geometric data.
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4.2.4. Floor plan generation
The CSV downloaded from GraphDB is used as input for the Python

code with Matplotlib. The Python code uses the linestrings of the
building elements to plot the lines between the coordinates of those
linestrings, using Matplotlib in PNG format. This conversion process
can be used as further input for the creation of maps for indoor robot
navigation (see also de Koning et al. [59]). All those plotted lines
together form a map of, in this case, the 8th floor of Atlas (see Fig. 6).
The Python code plots the different building elements in different
colours to highlight the different semantics of the building elements
that could be used by the path planner or the localization algorithm
to improve performance. This also shows the number of linestrings an
element consists of, so four for the columns and two for the doors. The
walls have, as explained, just one linestring per room, but by exporting
all rooms, the walls have an inner and an outer line. Furthermore, each
space can be assigned its own 2D and 3D geometry, which is kept out
of the process in this particular test case, but has been done elsewhere
with the OBJ format, for example [61,62].

5. Validation

In this section, the two investigated and implemented data flow
methods are evaluated against the available criteria in Section 3.4.
The evaluation is done by using the generated maps for localization
as described by [58] (Route 1 - IFC-JSON file transfer - TM1.3) and
for localization and navigation connecting the generated gridmap to
state-of-the-art navigation toolboxes provided by the Robotic Operating
System (Route 2 - LBD Server - TM2.2). For both methods, the following
steps are followed during the validation:

1. Localization is done based on the 2D map generated from the
data obtained from the BIM model.

2. The robot navigates from one room of the building to another in
a tele-operated (Route 1) or autonomous manner (Route 2)

3. The features extracted from the 2D LiDaR scanner during navi-
gation are compared with the features of the generated maps.

For both Route 1 and Route 2, we achieved semantic localiza-
tion and autonomous navigation, respectively. Both routes are tested
in the Atlas building on the TUe campus. Several simulations and
real-world tests were performed, and the final real-world tests were
video-recorded, including a visualization of the data available for the
robot to perform its localization and navigation. The videos showing
the robot localizing (Route 1) and autonomously navigating (Route 2)
are publicly available.37 In principle, both tests were successful in the
sense that:

1. data can be transferred successfully from BIM model to robot
world model in both cases;

2. robot localization and navigation is feasible in both cases;
3. the data represented by the BIM model and robot world model

is spatially accurate to the extent that localization is possible;
4. the robot has semantic knowledge of spaces and connecting inter-
faces (e.g., rooms, areas and doors), allowing navigation;

5. the robot has access to material properties in relation to its sensing
capabilities (e.g. glass);

6. the robot can query required data efficiently during operation.

While these outcomes can be expected, these tests were also aimed
at investigating how the two data transfer approaches work in practice.
While it is recognized that the LBDServer approach (Route 2 - TM2.2) is
more extensible, more standard, and potentially more data-rich because
of the live data connection, it is also recognized that the IFC-JSON

37 https://youtube.com/playlist?list=PLR6weRZsGeth5ML8j0JwxRRMx8nO
E04D0
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Fig. 7. Left side, view of the building. Right side 2D map with overlapping LiDaR
readings (green). The room location on the 2D map is spatially inaccurate as can be
seen by the LiDaR readings detecting the room corner being shifted w.r.t. the expected
room location on the map. Furniture is detected by the LiDaR scanner, but is not
represented in the map.

file-based approach (Route 1 - TM1.3) is more light-weight and easier
to set-up as the web-based infrastructure and its connections are not
needed. Transfer Method 1.3 (IFC-JSON based) is a lot more manual,
however, and much less standard, leading to a higher risk for errors and
lower scalability. If this approach can be implemented on a web server
(see TM 3.1), this would create a lot of added value and potential.

For the different criteria outlined in Section 3.4, a more elaborate
validation is given in the below Sections.

5.1. The data represented by the BIM model needs to be spatially accurate

In order to ensure correct localization, the spatial accuracy of the
maps derived from the BIM data should be high. In other words, given
that there are no unmodelled elements in the space where the robot
navigates, sensors’ readings should match the expected readings based
on the map layout. In experiments conducted with both methods, we
have seen that that is not always the case. Fig. 7 shows the map used for
semantic localization (Route 1). By superimposing the LiDaR readings
to the generated 2D map, it can be seen that the corner of the room is
detected closer to the robot than what is reported on the map.

Other elements such as stairs might also be reported incorrectly on
the map because they were modelled incorrectly in the BIM model. This
is an important problem or challenge, because many as-designed BIM
models differ from the real world. The challenge here is to make this
difference as small as possible, and in any case below an acceptable
tolerance level. This tolerance level for differences between stored
building geometry and LiDaR scan depends on the case in which the
robot navigation is being used. Security- and safety-critical cases need
a much smaller tolerance level compared to low-cost and approximate
navigation cases. In our current case, we are on the accuracy level of
the second: approximate navigation, since our BIM model clearly needs
further updates to be usable for autonomous navigation. As this article
investigated primarily data transfer methods first, future research can
now investigate in more detail how to make updates to the live digital
twin or BIM model based on on-site measurements to further improve
model accuracy.

Fig. 8 shows a partial view of the map used for autonomous naviga-
tion (Route 2). According to the robot’s location, the modelled stairs
should be perceived by the robot’s LiDaR scanner. However, that is
not the case which implies that the stairs were modelled closer to the
location of the robot than they are in reality. Indeed, as can be seen
in Fig. 8, the staircase are more to the right in reality, and behind the
column.

5.2. The robot needs to have semantic knowledge of spaces and connecting
interfaces (e.g., rooms, areas and doors)

Overall, in both cases, there is good availability of connectivity
information of rooms and spaces and elements. As the second transfer
method (TM 2.2 - LBD Server) preserves more data and semantics, this
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Fig. 8. Left side, view of the building. Right side 2D map with overlapping LiDaR
readings (red). The stairs’ location on the 2D map is spatially inaccurate as can be
seen by the LiDaR readings detecting free space instead of the stairs.

Fig. 9. More detailed BIM models can include more dynamic data, in which case
encoding and recognition of interfaces with spaces potentially becomes significantly
more complex.

data transfer method performs better than TM 1.3 (IFC-JSON file). In
the former case, a clear topology graph is easily available, including
interfaces between elements and spaces, so the space topology and
element interfaces can be easily retrieved. This is much more complex
in TM1.3, where much of this data is flattened or more indirectly
encoded in the JSON version of IFC.

It is worthwhile to note here that some structural elements modelled
in the BIM model and extracted by either of the data transfer methods
change position over time (e.g., doors can be open or closed). While
this is of limited impact in our case as we used a limited sample file
(only door positions change), this can become a much more significant
challenge if more furniture is made available in the model as is for
example the case in the model displayed in Fig. 9.

For the case of the doors, the difference of status (e.g., open vs
closed) is important when using maps derived from the data of a BIM
model for navigation and localization. Namely, a closed or locked door
clearly occludes the path towards a navigation goal which needs to be
taken into account during path planning. For the work addressed in this
paper, we assumed all doors closed for the map generated using Route
1 and all doors open for the map generated using Route 2. However,
this assumption was not always met as can be seen in Fig. 10 for Route
1 and in Fig. 11 for Route 2. In the case of Fig. 10, in fact, a solid wall
was expected, while in reality a door was presented. So the BIM model
did not match with reality. In the case of Fig. 11, an open door was
expected, while it was fully closed in reality.

5.3. The robot needs to be aware of material properties and the relation to
its sensing capabilities (e.g. glass)

Mobile robots are mostly equipped with 2D or 3D LiDaR scanners
which are sensitive to glass surfaces. A glass surface might be detected
as free space because the LiDaR beams pass through the glass as shown
in Fig. 12 (Route 2). This might result in the wrong navigation decisions
by the robot. When the building digital twin provides information on
14
Fig. 10. Left side, view of the building. Right side 2D map with overlapping LiDaR
readings (green). The door is represented as closed in the map (red lines) but it is open
in reality and detected as open by the lidar (dotted green line).

Fig. 11. Left side, view of the building. Right side 2D map with overlapping LiDaR
readings (red). The door is represented as open in the map but it is closed in reality.

Fig. 12. Left side, view of the building. Right side 2D map with overlapping LiDaR
readings (red). The robot faces a glass wall and the LiDaR readings pass through
indicating free space.

material properties, the robot can adjust its path or correctly interpret
the LiDaR readings.

In TM1.3 (IFC-JSON file), material properties had been lost during
the conversion process. It is possible to still include this information in
the eventual JSON data by modifying the data transfer procedure. Be-
cause of the direct character of the transfer (not extensible), this easily
becomes an error-prone and unscalable method. In contrast, in TM2.2
(LBD Server), further material characteristics are readily available, as
well as smart building data (BRICK ontology), and potentially even
damage data (DOT ontology). They can simply be queried on demand
and then used. In this sense, the second approach that relies on TM2.2
performs better because of its higher level of extensibility.

5.4. The robot needs to be able to query this data efficiently (real time)
during operation, through an abstracted programming or query interface

For both data routes, maps are generated offline from the data ex-
tracted from the BIM model. For Route 1, all spatial and semantic data
were stored in a database deployed on the robot which was queried
in real-time during movements. For Route 2, the data to create the
gridmap were queried in real-time before starting navigation. In that
sense, both methods contained manual operations, leading to needed
improvements to make the procedures live and real-time. The amount
of manual operations is however considerably smaller in the case of
TM2.2 (Route 2), as most of the operations do occur through queries
against an online database server.

In any case, as a conclusion, a very important challenge arose
here. Namely, the robot performs its localization and navigation always
locally in ROS (on the ‘edge’) for obvious safety and computational
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efficiency purposes (e.g. obstacle avoidance). Data about the building
is available on the cloud, in both data transfer methods. In all pos-
sible scenarios, a clear and good strategy is required to balance how
often and how much data is requested and queried from the cloud.
For example, it may be one approach to query all data in IFC-JSON
format before starting the navigation and then to perform all further
navigation locally. This reduces networking time and cloud computing
needs. Alternatively, one could choose to always keep the link with
data on the cloud, which is closer to the LBD server approach, and
regularly perform data checks through queries over the local network.
This increases networking load and computational load for the server,
yet likely leads to more secure navigation for the robot. This particular
challenge of balancing cloud and edge computing efforts needs to be
investigated in more detail in the future.

6. Conclusion and future work

6.1. Conclusions

This paper presents several data transfer methods (TM1 - TM3)
to extract data from BIM models and make them available to create
semantic and grid maps for robot navigation. The different trans-
fer methods are listed and their characteristics are evaluated in one
complete table. A distinction is hereby made between (1) traditional
IFC-based file transfer, (2) live linked data server, and (3) JSON-based
web services. Evaluated characteristics are their scope of standardiza-
tion, information transfer steps, dependencies, extensibility at run-time,
and reliability. Of the methods presented, the two most significant
ones, namely IFC-JSON file transfer (TM1.3) and LBD server (TM2.2),
were implemented and validated with robot localization and navigation
tests. The IFC-JSON file transfer method (TM1.3) was hereby tested as
an alternative to transfer method TM3.1 that relies on JSON-based web
services. As this was too costly to implement in this stage of research,
the alternative and most closely resembling routine via IFC-JSON file
transfer was implemented as well. As this came out promising, future
work can look into porting this method to a server-based implemen-
tation, which will require further standardization of the IFC-JSON file
format.

Validation experiments (Route 1 and Route 2) above all highlight
the feasibility of the approach in general, i.e., of creating maps from
original BIM models and using them for real-time robot navigation.
Both the IFC-JSON and the LBD server routine came out successful.
While the IFC-JSON approach was considerably more manual and did
not generate live data access, the LBD server approach appears to be
more scalable and extensible, although this approach needs more work
to set up correctly. The two experiments were evaluated using outlined
information transfer criteria:

1. broad standardisaton scope
2. few data transformation operations
3. software-neutral dependencies
4. extensible at robot run-time
5. up-to-date data (reliability)

In addition to these goals or objectives, further functional criteria
were evaluated in the context of the specific use case that was tested,
namely indoor robot navigation in an existing building. This included
the following additional criteria:

1. The data represented by the BIM model needs to be spatially
accurate.

2. The robot needs to have semantic knowledge of spaces and con-
necting interfaces (e.g., rooms, areas and doors).

3. The robot needs to be aware of material properties and the
relation to its sensing capabilities (e.g. glass)

4. The robot needs to be able to query this data efficiently (real time)
during operation, through an abstracted programming or query
15

interface.
6.2. Improvements and challenges

Several improvements and challenges have been identified based
on the experiments made. First and most importantly, the workflows
and the overall success of navigating through a building based on BIM
model data depends on the quality of that BIM model data. Standard-
ization of the data structure, including a structured BIM modelling
approach, is needed in order to make the transfer of BIM data to robot
streamlined and less expensive in terms of programming effort.

The BIM model also needs to align sufficiently well with reality,
so that the geometry is sufficiently reliable and recognizable for robot
navigation. The elements of the BIM model need to be spatially and
geometrically accurate to achieve required localization and navigation
performance. Attention should be given to achieve a high degree of
correspondence between the BIM model and the actual construction of
the building to allow accurate matching of real-time sensor readings
and the maps generated from the BIM model. It would be helpful if
a quality assurance and checking procedure would be available that
checks whether the difference between model and geometry remains
within an acceptable tolerance level. In this case, a specific tolerance
level needs to be defined for allowing robot localization and navigation,
to be able to identify implementation cost and risk for the robot
navigation.

6.3. Future work

In terms of future work, some specific features can easily generate
added value for diverse applications with the autonomous robot. First,
the available information of the elements (e.g. material, thickness)
can be used for the correct interpretation of robot sensor readings.
Being aware of the presence of glass can be a very valuable piece of
information for a robot, allowing it to take an alternative route.

Second, dynamic features, such as doors, furniture and windows,
should be represented in the generated map in a dynamic manner
(i.e. movable) to account for a possible change in state (e.g. open
and closed). For this particular case, valuable future work lies in
investigating whether the building data can be updated dynamically
to take into account the dynamics of the built environment the robot
operates in. We regard establishing this bi-directional data connection
between robots and data extracted from BIM as a direct next step in
our research line, leading to a more live digital twin of the building.
This can not only help robot navigation, this could also be used to
mend the BIM model and correct it. When the correspondence between
the original BIM model and the data extracted and used to create the
map (LBD cloud) is preserved, then updates to the map could also be
reflected back to the BIM model.

Finally, our research has not yet investigated the use of 3D features
for localization and navigation; hence the maps generated from BIM
data are two-dimensional. Future research will look at the usage of
3D sensors (e.g., point clouds) to improve localization and navigation
performance which will require the generation of 3D maps from the
data exported from BIM. This is possible, but is expected to increase
computational complexity significantly.
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