
TYPE Original Research
PUBLISHED 17 August 2023
DOI 10.3389/frobt.2023.917637

OPEN ACCESS

EDITED BY

Juan D. Hernández,
Cardiff University, United Kingdom

REVIEWED BY

Ze Ji,
Cardiff University, United Kingdom
Minhyeok Lee,
Chung-Ang University, Republic of Korea

*CORRESPONDENCE

Hao Liang Chen,
h.l.chen@tue.nl

RECEIVED 11 April 2022
ACCEPTED 10 July 2023
PUBLISHED 17 August 2023

CITATION

Chen HL, Hendrikx B, Torta E,
Bruyninckx H and van de Molengraft R
(2023), Behavior adaptation for mobile
robots via semantic map compositions
of constraint-based controllers.
Front. Robot. AI 10:917637.
doi: 10.3389/frobt.2023.917637

COPYRIGHT

© 2023 Chen, Hendrikx, Torta,
Bruyninckx and van de Molengraft. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

Behavior adaptation for mobile
robots via semantic map
compositions of
constraint-based controllers

Hao Liang Chen1*, Bob Hendrikx1, Elena Torta1,
Herman Bruyninckx1,2,3 and René van de Molengraft1

1Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven,
Netherlands, 2Department of Mechanical Engineering, KU Leuven, Leuven, Belgium, 3Flanders
Make—Leuven, Leuven, Belgium

Specifying and solving Constraint-based Optimization Problems (COP) has
become a mainstream technology for advanced motion control of mobile
robots. COP programming still requires expert knowledge to transform specific
application context into the right configuration of the COP parameters (i.e.,
objective functions and constraints). The research contribution of this paper is
a methodology to couple the context knowledge of application developers to
the robot knowledge of control engineers, which, to our knowledge, has not yet
been carried out. The former is offered a selected set of symbolic descriptions
of the robots’ capabilities (its so-called “behavior semantics”) that are translated
in control actions via “templates” in a “semantic map”; the latter contains the
parameters that cover contextual dependencies in an application and robot
vendor-independent way. The translation from semantics to control templates
takes place in an “interaction layer” that contains 1) generic knowledge about
robot motion capabilities (e.g., depending on the kinematic type of the robots),
2) spatial queries to extract relevant COP parameters from a semantic map (e.g.,
what is the impact of entering different types of “collision areas”), and 3) generic
application knowledge (e.g., how the robots’ behavior is impacted by priorities,
emergency, safety, and prudence). This particular design of, and interplay
between, the application, interaction, and control layers provides a structured,
conceptually simple approach to advance the complexity of mobile robot
applications. Eventually, industry-wide cooperation between representatives of
the application and control communities should result in an interaction layer with
different standardized versions of semantic complexity.

KEYWORDS

adaptable behavior, non-expert programming, world model, constraint-based control,
semantic maps

1 Introduction

To advance the capabilities of autonomousmobile robot applications, their programming
should be simplified for non-experts and involve motion control experts only when a
new level of application capabilities must be realized (Wilde et al., 2018; Wilde et al., 2020;
Heimann and Guhl, 2020). In addition, progress is to be made in integrating robots
from several vendors into one and the same application, despite the variations in each

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2023.917637
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2023.917637&domain=pdf&date_stamp=2023-08-12
mailto:h.l.chen@tue.nl
mailto:h.l.chen@tue.nl
https://doi.org/10.3389/frobt.2023.917637
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2023.917637/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.917637/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.917637/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.917637/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

vendor’s control software. To solve both challenges, this paper
introduces a methodology that connects a low-level motion control
algorithm (developed by a vendor’s control engineers) to high-level
symbolic descriptions of the robots’ desired behavior (configured
by application developers). The ambition is to allow an application
developer to change the motion control strategy and target of the
mobile robot just by changing semantic annotations on a geometric
map. Of course, the approach is limited to motion behaviors already
implemented by control engineers. For example, behaviors such as
“keep enough space with walls“ and “drive forward in your traffic
lane” require (re)design of the low-level motion control.

Our methodology is inspired by the traffic system, where a
decoupling of responsibilities is present between the traffic regulator
and the traffic participant. The traffic regulator prescribes symbolic
behavioral instructions by adjusting the traffic layout with traffic
signs/markings and the traffic participant interprets the composition
of those traffic signs/markings and executes its motion accordingly.
This is realizable as there is common knowledge between the two
entities in the form of traffic signs/markings. Similarly, we introduce
common knowledge components between the control engineer
and the application developer. These knowledge components are
symbolic descriptions of 1) the generic behavior that needs to
be executed, 2) the geometric area in which this behavior needs
to be executed, and 3) the intention for executing the behavior.
The application developer uses these descriptions to design new
behavioral rules, for example, 1) execute a stopping motion, 2) in
front of the red stop light, and 3) with an intention to prevent
future collisions. The control engineer translates these symbolic
descriptions into a Constraint-based Optimization Problem (COP)
that can be solved by robot motion control. A proper design
of these common knowledge components allows decoupling of
responsibilities between the application developer and the control
engineer.

Section 2 gives an overview of related studies. Section 3
describes our first contribution that translates the principles of
the traffic system into our three-layered methodology. Section 4
describes our second contribution in extracting robot-executable
commands from themethodology. Section 5 describes our third and
final contribution in which the applicability of the methodology is
shown in simulation and real-world experiments. Ourmethodology
trades potential in optimality in favor for facilitated programming
by non-experts. Hence, no claims are made regarding superiority
in quantitative measures as time or distance minimization. Control
engineers on their own will most likely design a more optimal
COP by specifically parameterizing it to the used COP solver and
environment (Mercy et al., 2018). Section 6 provides a conclusion
and discussion of the methodology.

2 Related work

Core behaviors of mobile robots are to reach a target in a map
(Moravec and Elfes, 1985), not to collide with occupied areas while
driving to the target (Elfes, 1989; LaValle and Kuffner Jr, 2001;
Marder-Eppstein et al., 2010; Mercy et al., 2018; Macenski et al.,
2020), and to adapt the driving behavior to safety and inter-robot
coordination constraints (Wilde et al., 2018). A real-world example
of such constraints is the traffic system: traffic signs and markings

regulate, warn, or guide all traffic participants (DoT, 2009). It is the
traffic participants’ responsibility to adapt their actual driving to a
variety of areas with different traffic conditions. For autonomous
robots, such adaptations have been introduced in several ways
(Kuipers, 2000): adapting to geometric characteristics of the
environment (Caloud et al., 1990; Asama et al., 1991; Kato et al.,
1992), relating behavioral restrictions to areas for the coordination
of multi-robot passages, e.g., “not to enter an intersection if
something else is present” (Kim et al., 2016; Wilde et al., 2018;
Ravankar et al., 2019; Wilde et al., 2020), and adding areas that
increase cost functions in path planners (Hart et al., 1968). In
principle, all of that mentioned above can be incorporated into a
COP, more in particular, of the Model Predictive Control (MPC)
variety (Mayne et al., 2000; Mercy et al., 2018).

2.1 Semantic maps

A semantic map (Galindo et al., 2005; Nüchter and
Hertzberg, 2008; Deeken et al., 2015; Kostavelis et al., 2016; Ruiz-
Sarmiento et al., 2017; Deeken et al., 2018; Varanka and Usery,
2018; Joo et al., 2022) annotates points and areas in a geometric
map with labels that represent a symbolic relation between the
annotation and the envisaged motion behavior adaptation in the
annotated area (Galindo et al., 2005; Nüchter and Hertzberg, 2008;
Deeken et al., 2015; Kostavelis et al., 2016; Ruiz-Sarmiento et al.,
2017; Deeken et al., 2018; Varanka and Usery, 2018; Joo et al.,
2022).Well-chosen labels facilitate an application developer’s job “to
program” robots, or rather, to configure their behavior. In addition
to the human behavior configuration, action planners have been
developed, such as STRIPS (Dornhege et al., 2010; Kuipers et al.,
2017) or PDDL (Fox and Long, 2003; Gerevini et al., 2009; Joo et al.,
2022). These solve a constraint satisfaction problem, where the
constraints are Boolean pre- and post-conditions on the status of
the world. For example, “to travel to the fridge, one first needs to
enter the kitchen.” The MPC approach of COPs adds per conditions
in continuous time and space, that is, (in)equality constraints that
have to be satisfied, or objective functions that have to be optimized,
during the execution of a motion. In a semantic map context,
both boolean and continuous constraints are complementary. For
example, control instructions are related to geometric areas in the
semantic map (Caloud et al., 1990; Asama et al., 1991; Kato et al.,
1992).

2.2 Continuous parts of COPs

“Objective functions” in the path planning literature are typically
referred to as cost criteria, where the objective is to minimize a
cost criterion such as the traveled distance. In the context of this
paper, cost criteria are related to entering, traversing, and/or leaving
geometric areas in the semantic map. The simplest costs come from
distances between “unoccupied areas” and the “target” (Moravec and
Elfes, 1985) and relative spatial locations of “occupied areas” (Elfes,
1989; LaValle and Kuffner Jr, 2001; Marder-Eppstein et al., 2010;
Macenski et al., 2020).These simple cases suffice for taskswhose sole
objective is to navigate to the target without collisions. The authors
consider the terminology of “objective functions” and “cost criteria”

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

as synonyms, and for consistency, we will use the term “objective
functions” throughout the paper.

Path geometries can be adapted to a semantic context by 1)
changing the weight of one objective function in the whole objective
functions, 2) adding new objective functions to semantic areas, 3)
semantically annotating more areas in the semantic map, or 4)
adding constraints between the properties in the geometric map
and/or the semantic relations. Kim et al. (2016) added region with
velocity constraints (RVCs) on areas that are difficult to traverse,
e.g., areas near water or with a muddy surface. Pierson et al. (2018)
added an objective function to the distance between cars on a
highway with multiple lanes to facilitate safe lane transitions.
Sünderhauf et al. (2016) added objective functions to the traversal of
office and corridor areas to allow the avoidance of busy office areas
at the expense of longer path lengths. Similarly, Chen et al. (2022)
added an objective function to the type of surface; e.g., it is more
important not to traverse “areas with green plants” than “normal
ground surfaces.” Mainprice et al. (2011) added terms related to
human comfort to, for example, allow the robot to remain in the
field of view of humans while navigating. Ravankar et al. (2019)
introduced inconvenient area costs. All objective functions can
end up as a weighted sum possibly extended with a prioritization
mechanism. Campos et al. (2019) added pose constraints with
respect to humans, distance constraints with respect to humans,
and distance constraints with respect to the wall. Shi et al. (2008)
added velocity constraints to let a robot pass a human in a safe
manner.

To the best of the authors’ knowledge, none of the previously
mentioned state-of-the-art publications provides explicit formal
models of the objective function or constraint knowledge they
introduce in the COP specification. Hence, it is impossible for
a robot to formulate (or, rather, to (re)configure) such a COP
itself and to adapt its motion to the information provided by
the semantic map. For example, knowledge on why a certain
objective function is more important than another and why the
difference in the importance between two objective functions
must be exactly the specific value and nothing else. Seminal
work in such composition is the subsumption architecture
of Brooks (1986), but without explicit and formal design
knowledge.

2.3 Discrete parts of COPs

The Task and Motion Planning literature introduces first-order
logical relations between symbolically represented actions to deduce
the proper sequence of actions to fulfill a task by means of STRIPS,
PDDL, or PROLOG engines (Fox and Long, 2003; Gerevini et al.,
2009; Dornhege et al., 2010; Waibel et al., 2011; Kuipers et al., 2017;
Tenorth and Beetz, 2017; Beetz et al., 2018; Faroni et al., 2020;
Joo et al., 2022). We recall that it is not an objective of this paper to
contribute to the improvements of such reasoning approaches and
engines. The first-order relations can be of various types:

• Pre-conditions: to restrict the (de)activation of actions when the
world is in a particular state
• Post-conditions: on the effects that executed actions have on

changes in the state of the world

• References to algorithms that need to be executed during the
solving of the COP and/or the perception required to update
the world model

For example, a pre-condition of a “move” action is that the robot
hasmotion-allowing components such aswheels andmotors; a post-
condition is a sufficiently large change in the position of the robot.

It is not always necessary to let the reasoning be carried out
by the robot, at runtime, because one can store the outcome of
offline-executed reasoning into geometric areas of the semantic map
and trigger its use as soon as the robot enters or leaves the areas.
For example, the abovementioned velocity constraints of Kim et al.
(2016) are applied as soon as the robot is contained within an RVC
area. Similarly, with the behavior adaptation policies in the work of
Caloud et al. (1990), Asama et al. (1991), and Kato et al.(1992), “a
robotmust not enter a crossroad if another robot is present there,” or
“if another robot is approaching, then avoid it to the right.” Kuipers
(2000) introduced explicit control specifications related to spatial
characteristics in the geometric base map and stored them in the
semantic map.

3 Methodology

The core technical contribution of this paper is the three-layered
structure, application, interaction, and control.Themajormotivation
is that the application layer helps non-experts to program mobile
robots because its interface reflects the traffic system, with its widely
understood semantics of traffic code, signs, and markers.

3.1 Inspiration: the traffic system

The traffic system is a successful realization of a decoupling of
responsibilities between the traffic regulator, who “annotates” areas
in traffic with behavioral constraints, and a traffic participant, who
realizes driving motion behaviors that satisfy those constraints. The
semantics of traffic are provided in terms of Traffic Control Devices
(TCDs), defined in standardization documents such as the Manual
on Uniform Traffic Control Devices (DoT, 2009).

Definition 1: TCDs shall be defined as all signs, signals, markings,
and other devices used to regulate, warn, or guide traffic, placed on,
over, or adjacent to a street, highway, pedestrian facility, bikeway, or
private road open to public travel by the authority of a public agency
or official having jurisdiction, or, in the case of a private road, by the
authority of the private owner or private official having jurisdiction.

In practice, a TCD is the combination of 1) a constraint on the
position and velocity of traffic participants and 2) a geometric area
in the world where the constraint holds. For example, a “trucks use
right lane”-sign obliges trucks to enter only geometric areas that
represent right lanes, and a “yield for pedestrians”-sign obliges traffic
participants to stop in front of a pedestrian crossing area. TCDs
that are laid out according to the best practices of traffic system
design are straightforward to compose; e.g., the composition of
both mentioned signs remains semantically unambiguous for traffic
participants. From a robotics system perspective, this compositional
nature of TCDs is a perfect fit for motion control specified as COPs.
Another excellent property of the traffic system is its unambiguous

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

FIGURE 1
Overview of the responsibilities of application developers (in blue) and control engineers (in red). The interaction layer represents the symbolic
knowledge that application developers and control engineers need to share. The application layer allows the application developers to program their
robots via symbolically described behavior and areas. The control layer translates symbolic behavior descriptions into parameters in 1) motion control
algorithms and 2) geometric maps.

priority ordering of composed TCDs, including the enumeration of
situational conditions in which the intent of (some) constraints in
TCDs can be violated.

3.2 Entities of the methodology

Figure 1 sketches the methodology as a three-layered structure
with relations clarifying the decoupled responsibilities between
the application developer (blue arrows) and the control engineer
(red arrows). The interaction layer in the middle represents the
symbolic interface to generate a model of TCDs, as discussed
previously. Ideally speaking, this interface should (eventually) be
standardized by a “Foundation” that represents all mobile robot
vendors.

Definition 2: Elementary Behaviors (EBs) are symbolic labels
that describe simple restrictions on a mobile robot’s position and
velocity, independent of the hardware characteristics of individual
robots.

This paper introduces four EBs: “stop in this area,” “drive forward
with a certain speed,” “avoid this area,” and “do not enter this area.”

Definition 3: Semantic Annotations (SAs) to areas on a
geometric map represent the human interpretation of that area.

In this paper, a semantic map is a geometric map with semantic
annotations.

Definition 4: Spatial Queries (SQs) (Sack and Urrutia, 1999) are
queries in a spatial database that can be answered on the basis of
geometric information only, that is, the spatial position and extent of
the entities involved.

In this work, the spatial database contains the geometric areas
of the geometric map, and the spatial queries retrieve geometric
areas, and two types of spatial queries are considered: 1) Filtering
Spatial Queries (FSQs), which yield a list of geometric areas filtered
by semantic annotation, and 2) Transformative Spatial Queries
(TSQs), which create new geometric areas by transformations on
some SAs. An example of a FSQ is to retrieve all geometric areas
of chairs that are contained within the kitchen, formulated as
“ContainedIn(chairs, kitchen).” An example of a TSQ is to generate
a 5 cm area around those chairs, formulated as “AreaAround
(ContainedIn(chairs, kitchen), [buffer = 5 cm]).”

Definition 5: Intentions are the reasons why application
developers add an EB in their application.

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

Definition 6: Priority between intentions is an ordered list of
intentions.

This work considers the intentions of “Progress” (to guide
the robot toward task completion), “Safety” (to warn robots for
collision risks), “NoDamage” (to prevent immediate collisions), and
“CompleteTask” (to indicate that a task is completed). Priorities
are used in the COP generator to deduce importance between all
involved EBs.

Definition 7: Area of Execution (AE) is a symbolic description of
the geometric area(s) which relate to the execution of EBs.

Definition 8: Semantic Behavior (SB) is a symbolic description of
mobile robot behavior related to semantic annotations on a semantic
map, by identifying 1) the EBs to execute, 2) the AE in which this
behavior applies, and 3) the intention behind each SB.

Definition 9: Behavior Area (BA) in a geometric map contains a
list of EBs, including their intentions.

Definition 10: Behavior map is a geometric map with BAs.
In this work, BAs include the “stop area,” “drive forward area,”

“avoid area,” and “no-enter area.”
The application layer in Figure 1 contains the application

developers’ SBs. It consists of the type of SQs that need to be
performed and also the types of SAs that form the input to retrieve
the geometric area(s).

The control layer represents the responsibilities of the control
engineer. As the SBs are solely a function of the components in the
interaction layer, a control engineer can focus itself on translating
these components.

Definition 11:Control specification is a translation of an EB into
parameters of low-level motion control algorithms.

Definition 12:Monitor is a condition that represents when an EB
should be executed.

In this work, monitors indicate when EBs should be executed
as SQs on the robot and the AE it finds itself in. For example, a
stop behavior is executed whenever the robot has fully entered the
corresponding stop area. BAs are generated from the SB by executing
the queries in the AE, and symbolic EB knowledge and intention
are stored within that area. A behavior map is created from these
BAs. The control engineer ranks the intentions in terms of priority
specified by the application developers, such that the robot can
determine what selection of behaviors are most important at any
given time. With the monitors and the behavior map in place, a
mobile robot queries its behavior map for the currently relevant EBs
and provides them to the motion control generator. In this work,
the generation results in a COP, that is, an objective function and
(in)equality constraint(s). Obviously, COPs are only one of many
possible types of motion controllers.

3.3 Impact of the methodology

The impact of the presented methodology comes from the
structured decoupling between the application layer and the control
layer, via a (standardized) interaction layer, that allows the two
layers to be independently developed. The methodology allows the
application developers “to (re)program” the behavior of their robots
in three complementary ways, by adjusting the relation between
an EB and a SA, the area in which EBs are effective, and/or the
intention of SBs. We thus transfer the complexity of behavior design

to the high-level application layer, while the “lower” interaction and
control layer can be described in a generic manner with, e.g., EBs.
The methodology does introduce a dependency, and that is on the
particular version of the interaction layer semantics. Motion control
engineers only need to add new motion control functionality when
semantics is updated, and that happens when application developers
have identified the need for one or more fundamentally new
SBs.

3.4 Example behavior map

Figure 2 depicts two two-lane crossing scenarios where the
difference is observed by the placement of the stop sign/marking.
This single difference results in differing behavior maps. The SAs
on the semantic map in combination with the SBs result in a
behavior map. Each SB is described by a combination of EB, AE, and
intention. A description is provided of the interpretation of the SB.
The AE is described as a TSQ executed on some semantic area with
some parameterization. This semantic area is formally described
as a FSQ, but for simplicity, we have described it with a single
statement. For example, the statement “StopMarkingInOwnLane” is
formally described as the FSQ “Contains (Contains (Lane, Robot),
StopMarking).” The TSQ “EqualArea” represents that the geometric
area of a BA is equal to the geometric area of the underlying
semantic area. The TSQ “AroundArea” generates a new geometric
area around an existing geometric area, and “AreaInDirection”
generates a geometric area in a certain direction with an existing
geometric area as a starting point.

The behavior map is a composition of BAs, where behavior map
“A” explicitly shows the separate maps containing specific types of
BA. This clarifies that the methodology allows BAs to be stacked
on each other such that new BAs can be independently introduced
via independently designed SBs. This independency simplifies
the design of behavioral rules for the application developer. In
behavior map “A,” all SBs are relevant. In behavior map “B,” SB
2 is not relevant as the stop marking is not in our robot lane
anymore. SB 8 is not relevant as the other robots do not move
anymore (due to the displaced stop sign). The resulting BAs are not
added to the behavior map, and subsequently, the behavior map
changes.

4 Implementation

The contribution of this section is the realization of the
methodology in a robot program. The first part pertains to the
application layer of formulating SBs, and the second part to the
control layer of generating the behavior map and COP.

4.1 Application layer

An application developer designs SBs as compositions of
symbolic components in the interaction layer (Figure 1). Figure 3
visualizes these relations in the form of a property graph,
that is, a graph in which nodes and edges are labeled and

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

FIGURE 2
Example of two different behavioral maps on the same geometric map. The numbers on semantic map A and behavior map A represent the related SB.
The BAs can overlay. FSQs are described as a concatenated SA for readability, e.g., “LaneThatContainsOwnRobotAndDestination,” formally written as
“Contains (Contains (lane, robot), destination).”

provided with properties. This paper uses JSON1 as formal
encoding:

JSON_entity = {

properties: {property_1: property_1_

value, property_2: property_2_value},

relations: {relation_1: JSON_entity_2,

relation_2: JSON_entity_3}

}

More concretely, the SB “drive forward in the direction [1,0] in
the lane that contains the robot and destination with speed limits of

1 https://www.json.org/json-en.html

2 m/s to make progress” is represented as a composition of EBs and
AEs:

SB_drive_forward_in_traffic_lane_to_

destination = {

properties: {EB_parameter_value: [2, 40,

[1,0]], intention_type: Progress},

relations: {execute_EB: EB_drive,

description_geometry_BA: AE_traffic_

lane}

}

4.1.1 Elementary behavior representation
Figure 3 (left) represents the property graph of an SB and

its EB entities as the relation execute_EB and the property

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
https://www.json.org/json-en.html
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

FIGURE 3
Property graph entities for the symbolic representation of SBs and AEs: black ovals represent nodes, green arrows represent relations between nodes,
and brown squares represent properties of nodes.

EB_parameter_value, respectively. The representation of the
EBs (Section 3.2) is in itself is a property graph:

EB_stop = {

properties: {EB_type: stop, EB_parameter_

type: []},

relations: {}

},

EB_drive = {

properties: {EB_type: drive forward,

EB_parameter_type: [’translational

speed limit’,

’rotational speed limit’,

’direction array’]},

relations: {}

},

EB_avoid = {

properties: {EB_type: avoid,

EB_parameter_type: [’translational

speed limit’,

’rotational speed limit’]},

relations: {}

},

EB_no_enter = {

properties: {EB_type: no_enter, EB_

parameter_type: []},

relations: {}

}

The property EB_parameter_type is configured via
propertyEB_parameter_value. For example, the SBmentioned
above would configure the translational speed limit to be 2 m/s,
the rotational speed limit to be 40 deg/s, and the drive forward

direction array to be [1,0]. The configurability of speed limits and
direction arrays makes sense in the context of our traffic system
inspiration, where the speed limit signs and white directional
arrays are omnipresent along roads. For the avoid behavior, it
makes sense to configure a lower speed limit as this behavior
is typically executed in risky situations, such as avoiding other
cars.

4.1.2 Area of Execution representation
Figure 3 (middle) represents the property graph of an AE

entity as a relation between SQs and (the geometric area of)
SAs. For each AE, the application developer chooses 1) the
type of TSQ, 2) the geometric area on which the TSQ should
be executed, and 3) the TSQ parametrization. This choice
involves, respectively, relations transformation_query
and execute_transformation_on and property
transformation_parameter_value. The AE
also relates to the SB mentioned above via relation
description_geometry_BA as follows:

AE_traffic_lane = {

properties: {transformation_parameter_type:

[]},

relations: {transformation_query: SQ_

EqualArea, execute_transformation_on:

filtered_SA_1}

}

4.1.3 Spatial query representation
Figure 4 visualizes the spatial queries introduced in this paper.

TSQs are referred to as “TSQ (SA, [parameterization]),” where the
argument “SA” implies the geometric area of the SA that is retrieved
from a semantic map. For example,

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

FIGURE 4
Spatial queries developed in this paper. Upper part: transformative SQs with a pre- and post-transformation result. Lower part: filtering SQs with a pre-
and post-filtering result; the first argument represents the area that is filtered by checking the spatial relation with respect to the second argument. The
HumanInDirection shape is inspired from human comfort analysis (Neggers et al., 2022).

SQ_EqualArea = {

properties: {transformation_type:

EqualArea, transformation_parameter_

type: []},

relations: {}

}

SQ_BufferArea = {

properties: {transformation_type:

BufferArea,

transformation_parameter_type:

[buffer_value]},

relations: {}

}

Application developers configure the parameters via the SB
property transformation_parameter_value in a similar
fashion as for EB parameters.

FSQs are referred to as “FSQ (SA_1, SA_2),” where the argument
“SA_1” is the geometric areas of the SA that need to be filtered,
and argument “‘SA_2” is the areas of the SA which are used to

check spatial relations such as “Contains.” The knowledge schema of
Figure 3 refers to the output of an FSQ as the entity “filtered_SA”;
it contains the type of FSQ to execute and its first and second
arguments “SA_1” and “SA_2”:

filtered_SA_1 = {

properties: {filter_SQ: Contains},

relations: {first_argument: filtered_SA_

2, second_argument: SA_robot

}

}

filtered_SA_2 = {

properties: {filter_SQ: Contains},

relations: {first_argument: SA_lane,

second_argument: SA_destination}

}

SA_robot = {

properties: {SA_type: Robot, displaceable:

true},

relations: {}

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

FIGURE 5
Data structures of the BA, monitor, and control specifications. These data structures are related to each other via dashed arrows connecting their
members.

}

SA_destination = {

properties: {SA_type: destination,

displaceable: false},

relations: {}

}

SA_lane = {

properties: {SA_type: lane, displaceable:

false},

relations: {}

}

The “SA_1” or “SA_2″ argument can refer to another
“filtered_SA” entity, as seen in “filtered_SA_1” previously. This
allows the description ofmore complex semantic areas, e.g., “the lane
that contains both the destination and the robot” given in a nested
FSQ expression as “Contains (Contains (lane, destination), robot).”
The application developer can then choose to execute the TSQ on an
unfiltered or filtered SA expression. The property displaceable
in the SA entity indicates whether the entity can be moved or not
(Section 4.2.1).

4.2 Control layer

The control layer is responsible for the following operations:

1) Generating BAs from SB entities
2) Determining relevant BAs from the (perception) monitor
3) Creating control specifications according to the relevant BAs
4) Generating the COP from the control specifications

Figure 5 visualizes the involved data structures
as rectangles and relations between them as dashed
arrows.

4.2.1 Generating and updating the behavior map.
BAs are generated from the SBs. Figure 6 depicts the BA types

used in this paper. The SB entity of the previous subsection may
result in the following BA data structure:

BA = {

EB_type: drive

EB_parameter_type: [’translational

speed limit’, ’rotational speed limit’,

’direction’],

EB_parameter_value: [2, 40, [1,0]],

intention_type: ’Progress’,

coordinates_x: [0, 10, 10, 0],

coordinates_y: [0, 0, 6, 6]

remove_at_every_loop: false

}.

Its first three members can be retrieved from the EB relations
and properties, and its fourth member from the intention property.
The last three members can be retrieved by solving the connected
AE entity, where the first two store the geometric area and
the last one indicates whether the BA needs to be removed
at every program loop. This is necessary whenever the BA
is generated from SBs that involve displaceable objects. For
example, the BAs in Figure 2 that result from SB3 and SB4
where we want the BA to move whenever the other robot
moves.

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

FIGURE 6
Description of the EBs with a visualization of the corresponding BA in the behavior map. In (A), there is a green stop area; in (B), there is a blue drive
forward area with the white arrow indicating the drive forward direction; in (C) there is an orange avoid area; and in (D), there is a red no-enter area.

Definition 13:Continuous semantic behaviors are SBs that apply
the TSQ on SAs which are deemed displaceable, that is, whose position
in the semantic map can vary over time. The resulting BAs in the
behavior map then also vary over time.

The continuous or non-continuous label allows the robot to
only recalculate those parts of the behavior map that can change.
Algorithm 1 shows the procedure to categorize SBs from the
connected AE entities. Line 4 retrieves the AE entity from the SB
entity and determines the entity to apply the TSQ. If this TSQ is
directly applied on an SA entity at line 5, then we deem the SB
continuous if the displaceable property is true at lines 6–10.
If this TSQ is applied first on a filtered_SA entity, then we keep
on querying the first_argument relation until an SA entity is
retrieved at lines 12–14. For example, for FSQ “Contains (Contains
(lane, destination), robot),” the first_argument relation that
yields an SA entity is “lane.” It should be noted that the eventual
retrieved geometric area is of this type SA. We can then deem an
SB continuous in a similar manner as mentioned above at lines
16–20.

The scenarios that remove all BAs even ifremove_at_every_
loop is false are as follows: SBs are added or removed in real
time, or geometric areas of non-displaceable SAs are changed in real
time. An example of the latter is a real-time change of destination
in Figure 2, which influences the lane that the robot needs to
traverse. This clarifies line 2–6 ofAlgorithm 2, which generates and
updates the behavior map from the (non)continuous SBs. Each loop
removes the BAs that result from continuous SBs at lines 7–11.
We, then, generate BAs from the continuous SBs or the not yet
analyzed non-continuous SBs from line 13 onward. For each SB,
we retrieve the AE entity at line 15 to retrieve the geometric areas.

If the TSQ is applied on an SA entity, then line 17 executes it on
all its geometric areas. If the entity is a filtered_SA entity at line
18, then we need to resolve the filtered_SA first by resolving the
“deepest” filtered_SA entities that may be connected to the relations
first_argument or second_argument at line 19. For each
retrieved geometric area at line 22, we, then, create a BA data
structure similar as the one mentioned above from the resolved
geometric areas and the SB entity properties/relations at lines
23–35.

4.2.2 Formulation of the constraint-based
optimization problem

This paper advocates the use of COP-based “low-level
controllers” because they represent a family of motion controllers
that are, both, able to make optimal use of a robot’s physical
capabilities and numerically configurable from symbolic behavior
maps (Section 4.2.5). The generic form of a COP is as follows:

robot state & domain: q ∈Q
input state & domain: u ∈ U

behavior map state & domain: b ∈ B
objective function: min

u
f (q,u,b)

= ∑dimU
k=1

fk (q,u,b)

equality constraints: g (q,u,b) = 0

inequality constraints: h (q,u,b) ≤ 0.

(1)

The state q = (x y θ)T is the position and orientation of
the robot. The input state u = (v ω)T contains the translational
and rotational velocities, shown in Figure 6A. The behavior state b

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

1: procedure DETERMINECONTINUOUSSB

2:   - Continuous_SB = [], Non-Continuous_SB= []

3:   for each SB do

4:     - query AE entity from SB

[relations][description_geometry_BA]

5:     ifAE[relations][execute_

transformation_on] ∈SA entity then

6:       ifSA[displaceable] == true then

7:        Continuous_SB ← SB

8:       else

9:        Non-Continuous_SB ← SB

10:       end if

11:     elseifAE[relations][execute_

transformation_on] ∈filtered_SA entity

then

12:       whilefiltered_SA[relations][first_

argument] ∉ SA entity do

13:         filtered_SA = filtered_SA

[relations][first_argument]

14:       end while

15:       query SA entity from filtered_SA entity

[relations][first_argument]

16:       if SA[displaceable] == true, then

17:         Continuous_SB ← SB

18:       else

19:         Non-Continuous_SB ← SB

20:       end if

21:     end if

22:   end for

23: end procedure

Algorithm 1. Determining whether SB is (non)continuous by querying the
knowledge graph

represents the spatial relation between the robot position and the
BAs on the behavior map (e.g., its overlap with an avoid area),
which is the source of the COP’s (in)equality constraints. A COP
solver algorithm then computes the “optimal” input u that respects
the (in)equality constraints and minimizes an objective function f,
which is a summation of input-related objectives fk (Section 4.2.5).
The COP’s numerical values are configured by relating them to the
EB_parameter_value in theBA data structure, inAlgorithm 3.

4.2.3 Monitors
Each BA triggers the execution of an EB, which, in turn,

generates a set of objectives and constraints. To reduce the amount
of control specifications to consider in a COP, only the relevant
BAs are taken into account (line 4, Algorithm 3). For example,
BA_7 and BA_8 in Figure 7 (left) are too far behind the robot and
BA_5 and BA_6 are too far in front of the robot. Monitors are the
mechanism to decide about the relevance of BA types because they
introduce limits on the search for the satisfaction of a FSQ. For
example,

1: procedure GENERATEANDUPDATEBEHAVIORMAP

2:   if initialization program ∨ SBs are

updated then

3:     - Analyzed_Non-Continuous_SBs = []

4:     - clear all BAs from behavior map

5:     - run Alg. 1 to store continuous and

non-continuous SBs.

6:   end if

7:   for each BA∈ behavior mapdo

8:     if BA[remove_at_every_loop] = =

true then

9:        - remove BA from behavior map

10:     end if

11:   endfor

12:   for each SB do

13:     if SB ∈ Continuous_SB ∨ (SB ∈

Non-Continuous_SB ∧ SB ∉

Analyzed_Non-Continuous_SB)then

14:        - considered_geometric_areas = []

15:        - query AE entity from SB[relations]

       [description_geometry_BA]

16:        if AE[relations][execute_

transformations_on] ∈ SA entity then

17:          - considered_geometric_areas ←

retrieved geometric areas of SA from

semantic map

18:        elseifAE[relations][execute_

transformations_on] ∈ filtered_SA

entity then

19:          - retrieve the geometric areas of the

entities at relations first_argument

and second_argument

20:          -considered_geometric_areas ←

geometric areas from filtered_SA

21:        end if

22:        foreach geometric area ∈

considered_geometric_areas do

23:          -create new BA = {}

24:          -create BA[coordinates_x] and BA

[coordinates_y] from geometric area

description

25:          ifSB Continuous_SB then

26:            -BA[remove_at_every_loop] = true

27:          else ifSB ∈ NonContinuous_SB then

28:            -BA[remove_at_every_loop] = false

29:          end if

30:          -retrieve EB entity from SB

[relations][execute_EB]

31:          -BA[EB_type] = EB

[properties][EB_type]

32:          BA[EB_parameter_type] = EB

[properties][EB_parameter_type]

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

33:          BA[EB_parameter_value] = SB

[properties][EB_parameter_value]

34:          BA[intention_type] = SB

[properties][intention_type]

35:          -behavior map ← BA

36:       endfor

37:     endif

38:   endfor

39: endprocedure

Algorithm2. Procedure togenerate andcontinuously update thebehaviormap.

1: procedure GENERATECOP

2:     //input for COP generator

3:   - list_objectives = [], list_constraints =

[]

4:   - monitor retrieves relevant BAs from the

behavior map

5:   - list_objectives, list_constraints ←

control specifications from relevant BAs

6:     //generate the COP from list of constraints

and objectives

7:   - deduce fk and fk,inf from ‘list_objectives’

and priority of intentions

8:   - list_constraints ← constraint replacement

from fk,inf if available

9:   - remove duplicate constraints and inferior

intention constraints from ‘

list_constraints’ that refer to the same

function_id

10:   - formulate the COP in Eq. 1

11: endprocedure

Algorithm 3. Procedure to generate the COP from the BAs.

monitor_BA_drive = { FSQ: Intersects,

first_argument: BA_drive, second_argument:

SA_robot }

specifies that a drive area is only relevant if it intersects with the
robot. The right of Figure 7 depicts an example of the relevant BAs
after applying the monitor.

4.2.4 EBs and control specifications
Each symbolic EB is translated into an EB_control data

structure (Figure 5), such as

EB_drive_control = {

objectives: [AlignDirection,

MaximizeTranslationalSpeed]

constraints: [SpeedLimitTrans,

SpeedLimitRot]

From this, one can derive objectives of types
“AlignDirection” and “MaximizeSpeed” and constraints of
types “SpeedLimitTrans” and “’SpeedLimitRot.” Each BA advocates
the execution of an EB_control and parameterizes the generated
objectives and constraints at line 5 of Algorithm 3, which is
also observed via the dashed arrows in Figure 5. The objective
“AlignDirection” minimizes the difference between the robot
heading h⃗ (Figure 6A) and a direction vector d⃗ (Figure 6B),
and the objective “MaximizeTranslationSpeed” maximizes the
velocity in the direction of h⃗, that is, input v. The constraint
“SpeedLimitTrans” restricts the translational velocity v, and the
constraint “SpeedLimitRot” restricts the rotational velocity ω. The
BA mentioned above could then generate the following control data
structures:

objective_1 = {

function_id: AlignDirection,

parameter_type: [’direction vector’],

parameter_value: [[1,0]],

intention_type: ’Progress’,

constraint_replacement_fid:

MaxAngleLimit,

constraint_replacement_par_

type: [’angle_diff’],

constraint_replacement_par_value: [60],

input_type: rotational velocity

}

objective_2 = {

function_id: MaximizeTranslationalSpeed,

parameter_type: [],

parameter_value: [],

intention_type: ’Progress’,

constraint_replacement_fid: none,

constraint_replacement_par_type: [],

constraint_replacement_par_value: [],

input_type: translational velocity

}

constraint_1 = {

function_id: SpeedLimitTrans,

parameter_type: [’translational speed

limit’],

parameter_value: [2],

intention_type: ’Progress’

}

constraint_2 = {

function_id: SpeedLimitRot,

parameter_type: [’rotational speed

limit’],

parameter_value: [40],

intention_type: ’Progress’

}

Section 4.2.5 explains the members constraint_
replacement_… and input_type of the objectives.

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

FIGURE 7
Example of a behavior map on the left with its relevant BAs on the right.

4.2.5 Resolving objectives and constraints
Monitors filter BAs that are far away from the robot, but BAs can

still overlap, as shown in Figure 7. A further reduction in relevant
BAs comes from the intention semantic labels: the objectives and
constraints with the highest priority intention are selected. This
section assumes the following priority ranking for the examples:
NoDamage>Safety>Progress.

To resolve a composition of constraints at line 9 of
Algorithm 3, we remove the duplicates and from the constraints
with similar function_id, we keep only those with the
highest intention priority. For example, a speed limit constraint
of 5 m/s can be introduced with an intention of progress
and another similar speed limit constraint of 2 m/s can be
introduced with an intention of safety. In this case, the highest
intention priority is safety, resulting in dismissal of the 5 m/s
speed limit. However, if progress would be temporarily more
important, then the robot would dismiss the 2 m/s speed limit
instead.

An additional mechanism is added to objective functions at
lines 7–8. In contrast to constraints that can either be satisfied
or not satisfied, objectives come with a scalar-valued “degree of
satisfaction.” Whenever multiple objective functions are considered,
each objective function could be multiplied by this scalar value
to represent its relative importance. Typically, such weight values
are manually tuned by the control engineers. Formal models that
relate those weight values to the semantic map do not exist (yet),
and, therefore, it is not intuitive for an application developer
to do this tuning. It is, therefore, chosen to allow dismissals of
objective functions and optionally replace them with constraints.

The latter is added as one may not want to fully dismiss an objective
function. For example, dismissing “Aligndirection” objective_1
mentioned above would introduce a constraint that would still guide
the robot toward direction vector d⃗ but would restrict the angle
difference between h⃗ and d⃗ to not exceed a limit. This clarifies the
objective members constraint_replacement_… which give
instructions on the replacement constraint and its parameterization.
The last objective member input_type is added to only do this
replacement procedure for objectives that will minimize the same
kind of input type and are also of lower intention priority. For
example, let us consider an additional objective:

objective_3 = {

function_id: AvoidArea,

parameter_type: [],

parameter_value: [],

intention_type: ’Safety’,

constraint_replacement_fid: none,

constraint_replacement_par_type: [],

constraint_replacement_par_value: [],

input_type: rotational velocity

}

In this case, objective_1 and objective_2 can both
be satisfied in a decoupled manner, as objective_1 is mainly
concerned about rotating the robot to align its heading, whereas
objective_2 is concerned about pushing the robot as fast
forward as possible. One can relate this to car driving, where
objective_1 is related to rotating the steering wheel

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

and objective_2 to pushing the gas pedal. The objective
function description in Eq. 1 also clarifies this where the objective
function f is a summation of input-specific objective functions
fk with objective_1 being f1(=ω) and objective_2 f0(=v).
Objective_1 and objective_3, however, both cannot be
satisfied in a decoupled manner as objective_3 also wants to
rotate the robot to avoid areas, and there is, thus, ambiguity in the
extent of how one should satisfy either of both constraints. For
example, the left side of Figure 7 characterizes a situation where
objective_1 wants the robot’s heading to remain unchanged,
while objective_2wants it to rotate anticlockwise.The intention
knowledge in this case clarifies that objective_3 would be f1
with objective_1 being the lower-priority objective f1, inf at line
7. The constraint replacement mechanism can then still satisfy
the dismissed objective_1 to a certain extent by adding the
constraint into the composition of constraints at line 8.

Executing Algorithm 3 to the relevant BAs in the right side of
Figure 7 can result in the following list of objectives and constraints:

list_objectives = [objective_1, objective_

2, objective_3]

objective_1 = {function_id: MaximizeSpeed,

input_type: translational velocity,

intention: Progress,

constraint_replacement_fid: none, ⋯}
(BA_0)

objective_2 = {function_id: AlignDirection,

input_type: rotational velocity, intention:

Progress,

constraint_replacement_fid: MaxAngleDiff,
constraint_replacement_par_type:

[‘angle_diff’],
constraint_replacement_par_value:

[60], .} (BA_0)

objective_3 = {function_id: AvoidArea,

input_type: rotational velocity, intention:

Safety,

constraint_replacement_fid: none, ⋯}
(BA_4)

list_constraints = [const1, const2, const3,

const4, const5, const6]

const1 = {function_id: SpeedLimitTrans,

parameter_type: [’translational speed

limit’],

parameter_value: [5],intention_type:

Progress} (BA_0)

const2 = {function_id: SpeedLimitRot,

parameter_type: [’rotational speed limit’],

parameter_value: [1],intention_type:

Progress} (BA_0)

const3 = {function_id: SpeedLimitTrans,

parameter_type: [’translational speed

limit’],

parameter_value: [2],intention_type:

Safety} (BA_4)

const4 = {function_id: SpeedLimitRot,

parameter_type: [’rotational speed limit’],

parameter_value: [0.5],intention_type:

Safety} (BA_4)

const5 = {function_id: NoEnterArea,

intention_type: NoDamage} (BA_3)

const6 = {function_id: NoEnterArea,

intention_type: NoDamage} (BA_1)

const7 = {function_id: MaxAngleDiff,

parameter_type: [’angle_diff’],

parameter_value: [60], intention_type:

Progress} (objective_2)

From the list of objectives, we first deduce the most important
input-specific objectives fk and the dismissed objectives fk, inf.
In this case, “Safety” is more important than “Progress”; thus,
f0 = objective_1 and f1 = objective_3 with f1, inf as
objective_2 at line 7. For the dismissed objectives, it is checked
if replacement constraints are specified at line 8, which, in this
case, would add const7 to the list of constraints. Line 9 removes
duplicate constraints, that is, either one of const5 or const6,
and the lower-priority intention constraints that refer to the same
“function_id,” that is, const1 and const2. The COP can then be
formulated from the filtered list of objectives = [objective_1,
objective_3] and list of constraints = [const3, const4,
const5, const7] at line 10.

So, finally, the sequence of algorithms Algorithm 1,
Algorithm 2, and Algorithm 3 at every program loop generates
a COP from the semantic map in real time.

5 Experimental validation

The contribution of this section is the practical validation of
the applicability of the methodology in simulated and real-world
environments, that is, whether it is, indeed, possible to transfer
the complexity of the behavior design to the application layer
with SBs, while keeping the design of the lower interaction and
control layer more generic with, e.g., EBs. Settings are explained
of the experiments in which we show behavior change by 1)
changing the priority of intentions, 2) adjusting the behavior map,
and 3) adjusting SBs with the real-time influence of perception
and localization on the semantic map. Real-time environmental
disturbances adjust the semantic map, which, in turn, adjusts
the behavior map that generates the COP. Verification of the
experiments is carried out by observing the behavior map and
determining whether the robot executes the control instructions on
it properly.

5.1 Experimental setting

The indoor environment of Figure 8 is considered for the
simulated and real-world experiments. The robot in Figure 9 is
deployed with the following hardware characteristics: omniwheels
for instantaneous translational/rotational motion, Hokuyo UTM-
30LX 2D Laser Range Finder (LRF) for detecting the occupied
areas, and Intel Realsense D515 Lidar camera for RGB images.
The used software components are Robot Operating System
(ROS) Kinetic/Melodic2 for the communication within the robot,

2 http://wiki.ros.org/kinetic, http://wiki.ros.org/melodic

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
http://wiki.ros.org/kinetic
http://wiki.ros.org/melodic
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

FIGURE 8
2D sketch of the experimental environment with the black areas denoting areas occupied by structural elements. The real-world environment is
visualized by reporting images associated with the view-points A, B, C, and D. The orange dashed line represents the path that the robot took in the
experiments for which the circle S represents the starting point of the robot in the simulations and the circle R represents the starting point of the robot
in the real-world experiment.

YOLO3 algorithm for the detection of humans, relational database
PostgreSQL4 with PostGis extension5 for storing and retrieving the
semantic map and behavior map (geometric) properties, Python
2.76 for the program execution, and localization algorithm of the
work of Hendrikx et al. (2021) to store the robot position in the
geometric and semantic maps.

Figure 10 visualizes the SAs of the semantic map which where
manually created and inserted into the database. At the moment, no
approach exists that can generate such a semantic map. To increase
the applicability, generic SAs were considered as 1) solid objects
such as walls and pillars, 2) lanes serving as the area for the robot
to navigate over, 3) a goal serving as the area for the robot to go
toward, and 4) functional areas indicating areas that are used for
other purposes than navigation, e.g., an area where people can sit

3 https://pjreddie.com/darknet/

4 https://www.postgresql.org/

5 https://postgis.net/

6 https://www.python.org/download/releases/2.7/

to rest or talk such as the purple couches at the left bottom of
Figure 8. In our semantic map, there is only one SA goal present, of
which the geometric area is one of the possibilities indicated on the
bottom of Figure 8. To increase the applicability of themethodology,
it is necessary to reach an agreement in robotic community of the
types of SAs that can be used. Similar collaboration can be set up
as the design of knowledge schemas for linked data on the web7.
Without such standardization, one can limit the design of SBs to
generic abstract SAs as Walls instead of more detailed variations
as WoodenWalls. The WoodenWall can be defined as a subclass of
Wall and inherit the SB, where inheritance is a common technique
in knowledge engineering (Tenorth and Beetz, 2017). The current
methodology also promotes the usage of generic SAs, where FSQs
allow the application developer to filter the SA instead of defining
combinatorial SAs as “LaneThatContainsWallsAndRobot.”

To show a moving robot, a custom COP solver was designed
to solve the generated COP from the robot program in Section 4.

7 https://schema.org/

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
https://pjreddie.com/darknet/
https://www.postgresql.org/
https://postgis.net/
https://www.python.org/download/releases/2.7/
https://schema.org/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

FIGURE 9
Frontal view of the mobile platform with hardware components indicated with blue arrows.

FIGURE 10
Visualization of the semantic labels and their geometric properties marked in green in the semantic map. At the left top, the green areas represent
pillars, at the right top the walls, at the left bottom the lanes, at the bottom the goals, and at the right bottom the functional areas.

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

TABLE 1 Description of the designed SBs where the first column gives a short description of the SB, the second column shows whether it is continuous, the third
column shows a short description of the AE and BE, and the fourth column shows the intention. Unclassified laserpoints are the laserpoints that are not contained
within a no-enter area on the behavior map.

Description Continuous SB AE + BE Intention

1. Stop at goal No Stop behavior on goal CompleteTask

2. Drive on lane to goal No Drive behavior on lane that contains goal and robot Progress

3. Avoid walls on lane to goal No Avoid area on wall that intersects with lane Safety

4. Avoid pillars on lane to goal No Avoid area on pillarthat intersects with lane Safety

5. Avoid functional area (FA) on lane to goal No Avoid area on FA that intersects with lane Safety

6. Avoid driving into pillars on lane No Avoid area in “front” of pillars Safety

7. Avoid driving into FA on lane No Avoid area in “front” of FA Safety

8. Stay in lane to goal No Avoid area around lane Progress

9. No collision walls in lane No No-enter area on walls NoDamage

10. No collision pillars in lane No No-enter area on pillars NoDamage

11. Pass humans respecting comfort distance Yes Avoid area on human with shape HumanInDirection toward robot Safety

12. No collision human in lane Yes Avoid area on human with shape HumanInDirection toward robot NoDamage

13. No collision unknown laserpoints Yes No enter on unclassified laserpoint NoDamage

FIGURE 11
Simulation results of changing the order of intentions. On the left is the Gazebo environment (http://gazebosim.org/), and on the right is the behavior
map in RVIZ (http://wiki.ros.org/rviz). A mobile robot will move from A to C while passing a pillar located at B. The green path is the executed robot
motion by solving the COP real-time for intention “Progress” > “Safety,” and the red path is the executed robot motion by solving the COP for intention
“Safety” > “Progress.”

We kept the design of the individual components, such as the
monitor and objectives/constraints, simple as it would have taken
considerable time to guarantee quantitative criteria as robustness or
time/distance optimality for them. Similar reasoning was made for
the COP solver, as the design of an advanced COP controller could
be a paper on itself (Mercy et al., 2018). Therefore, the focus of this
work is solely on showing applicability of the methodology that it
is, indeed, possible to transfer the complexity in behavior design to
the application layer in the form of SBs, while keeping the layers
“below” relatively generic with, e.g., EBs. Quantitative results are
more related to an optimization of the lower control layer, for which
an optimal design was not the focus of this work. Supplementary
material is provided of the implementation details for the interested
readers.

For the following experiments, one or more SBs of Table 1 was
used. Simple SBs were designed to realize experiments, where a
theorem of designing proper SBs is left for future work. This is
reasonable as the traffic system even has a whole manual about this

topic (DoT, 2009). It is explicitly specified in the table of which SBs
are continuous and a description is given of the AE and BE. The
continuous SBs allow the robot to react to unforeseen circumstances
as these will update the behavior map real-time via Algorithm 2 at
lines 7–10. Supplementary material is provided of a more detailed
description of those SBs for the interested readers.

5.2 Results

5.2.1 Changing behavior via priority between
intentions

Figure 11 displays the results of a simulation8 in which we
change the motion behavior of the robot by only changing the
priority between intentions, which influences the generated COP

8 video_1 for the interested readers.

Frontiers in Robotics and AI 17 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
http://gazebosim.org/
http://wiki.ros.org/rviz
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

FIGURE 12
Simulation results of adding and composing BAs with the behavior map. The mobile robot (pink square) will move right toward the green stop area. The
executed robot motion is visualized as the white dashed arrows. At time t = t1, a permanent avoid area is added on the robot, and at time t = t2, a
temporary stop area is added on the robot.

from Algorithm 3. The considered SBs are 1–5 and 8–10, and the
SAs are shown in Figure 11 (left). We have visualized the results of
the executed robot motion, by real-time solving of the COP, as two
colored paths shown in Figure 11(left). It should be noted that these
paths are not the result of offline path planning algorithms as our
approach does not try to follow a predetermined path. The green
path took 16 s and is the result of solving a COP with a priority
“Progress” > “Safety,” where the red path took 24 s with a priority
“Safety” > “Progress.” This result is not surprising, as being safer is
realized by driving slower and/or precautiously moving away from
objects.

We verified a correct execution of themethodology by observing
the robot in the behavior map as in Figure 11 (right) with the
designed monitors and SB configurations in mind. The no-enter
behavior is checked by verifying that the robot will never overlap
with these red areas. The drive behavior is verified by checking
whether the robot drives aligned to the direction array d⃗ (toward
the right). The avoid behavior is verified by checking whether the
robot rotates away from those orange areas and slows down. The
stop behavior is verified by checking whether the robot stops its
motion whenever it is contained in the green area. Indeed, this is
the case, where the main difference between the two paths is the

avoid area at point B, resulting from SB 4. Whenever “Safety” is
more important, this area would be avoided by the robot while
simultaneously lowering its speed. In contrast to when “Progress”
is more important, we, indeed, verify that the robot ignores these
avoid areas.

5.2.2 Changing behavior real time by adding and
composing behavior areas

Figure 12 displays the execution motion results in a simulation
environment9 in which we influenced the robot behavior by adding
independently new BAs in real time. We execute the SBs 1–5 and
8–10 where the visualization of SB 8 is missing.We add a permanent
avoid area from time t = t1 and a temporary stop area at t = t2 which
lasts for 4 s, as data structures.

BA_1 = {

EB_type: avoid

EB_parameter_type: [’translational speed

limit’, ’rotational speed limit’],

9 video_2 for the interested readers.

Frontiers in Robotics and AI 18 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

FIGURE 13
Real-world experimental results of real-time behavior map changes by changing the semantic map. The relevant goal is represented as a green stop
area, the robot is encircled in dark green, and the lane is indicated as a white-dashed polygon. At time t0, the relevant goal for the “‘drive to goal” SB is
G1 on the semantic map, and subsequently, a green stop area is placed there. At time t1, the relevant goal changes to G2, and subsequently, the green
stop area changes its position.

EB_parameter_value: [0.2 m/s, 0.35

rad/s],

intention_type: ’Safety’,

coordinates_x: [⋯],
coordinates_y: [⋯]
remove_at_every_loop: false

},

BA_2 = {

EB_type: stop

EB_parameter_type: [],

EB_parameter_value: [],

intention_type: ’NoDamage’,

coordinates_x: [⋯],
coordinates_y: [⋯]
remove_at_every_loop: false

}.

These BAs could have resulted from some SBs as “avoid water
spillage area” and “stop for passing human.” Also, the methodology
is structured enough to handle the composition of BAs such that an
application developer can design SBs without the consideration of

the already present SBs. Subsequently, we do not need to check for
consistency or event transitions between behaviors. We, however,
cannot guarantee that a non-zero input will be found, that is, the
robot will not move. When more and more BAs are added, it can
occur that a composition of constraints is obtained that can only be
solved with a zero input. Also, similar to the traffic system, a manual
can be defined (DoT, 2009) containing the best practices of adding
BAs, but this is out of scope in the current work.

We verify the correct execution of robot motion via the behavior
map. At the robot’s initial configuration at time t0, we would expect
the robot to take the avoid area into account and turn slightly
anticlockwise while driving toward the green stop area.This, indeed,
occurs as indicated by the dashedwhite arrow on top of Figure 12. At
time t1, the custom avoid area is added such that we expect the robot
to slow down and rotate further anticlockwise toward the blue area
that has no overlap.This is, indeed, the case as visualized by thewhite
arrow numbered 1 in the middle of Figure 12. At time t2, a stop area
is added on top of the robot and we expect the robot to stop, which,
indeed, occurs at the bottom of Figure 12 where no white arrow is
present. After 4 s, the stop area is removed and we expect the robot
to squeeze itself in the non-overlapping blue area between the pillar
and the custom avoid area. It should be noted that SB8 makes an

Frontiers in Robotics and AI 19 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

FIGURE 14
Real-world experimental result of the influence of the perception on the behavior map. The localization component adds the geometric and semantic
robot property onto the semantic map (dark green circle), whereas the perception component adds the detected human and unclassified laserpoints
on the semantic map. The SBs then generate the proper behavior map from this updated semantic map.

avoid area around the drive lane which is not visualized. Indeed, the
robot behaved as expected where its resulting motion is indicated in
the middle of Figure 12 with the white arrow numbered 2.

5.2.3 Reconfiguring the behavior map
Figure 13 displays the results of the real-world experiments10 in

which we show the applicability of the methodology in combination
with the localization algorithmof thework ofHendrikx et al. (2021).
This localization algorithm will update the robot its position in the
semantic and behavior maps. All the SBs in Table 1 are active in
this experiment. An application developer updates the geometric
area of the goal from G1 to G2 whenever the robot has reached G1,
where a goal is considered as a non-displaceable SA. This invokes a
recalculation of the behavior map as in Algorithm 2 lines 2–5. We
notice this in Figure 13 as the bottom part has 1) a different green
stop area and 2) additional orange avoid areas at the bottom of G2
due to the wall that intersect with lane L2. It should be noted that
RVIZ did not always properly remove the BA visualization, but via
the observed robot motion behavior, we did conclude that BAs were
removed.

10 video_3 for the interested readers.

At time t0, the geometric area of the goal is equal to G1, and
according to SB1, a green stop area needs to be put on top of it.
The lane that contains this goal and also intersects with the robot
is L1, and hence, a blue drive area is put on lane L1. At time t1, as
in the bottom of Figure 13, the robot has passed goal G1 and the
application developer reassigns the geometric area of the goal to
become G2. Updated SB1 now puts the green stop area on goal G2,
and the updated SB2 adds a blue drive area on top of lane L2 with a
direction vector towardG2. It is, therefore, that the robot nowmoves
“downward.”

5.2.4 Dealing with dynamic or unknown objects
Figure 14 displays the influence of the perception component

on the behavior map, where the robot has passed goal G2 and
is on its way to goal G6 of Figure 10 by traversing lane L7. An
unforeseen circumstance occurs where there is a human moving
toward the robot at Figure 14A. On the right, the image output of
the intel real sense is seen, where two humans are detected via the
two bounding boxes. Only the black encircled human will influence
the behavior map as the other is not present on lane L7. This human
then occurs on the behavior map according to the shape of the
HumanInDirection SQ in Figure 4. The perception component then
influences the behavior map by adding the human object onto the

Frontiers in Robotics and AI 20 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

semantic map, which gets translated by SB11 and SB12 into the
behavior map.

In Figure 14B, a situation is created where the human has just
left the robot’s vision and the robot is in front of a trashbin not
priorly known. The BAs from SB11 and SB12 are still active where
we emphasized the no-enter area of the human on the left. The
black dots on the behavior map represent the laserscan points,
and currently, most are contained within the no-enter areas of the
behavior map. The part that belongs to the trashbin (indicated with
the purple arrow) is not contained within a priorly known no-enter
area. This is because 1) we were not aware of its existence and, thus,
have not added it a priori on the semantic map and 2) no SB was
designed that would do something with trashbin detections. In this
case, the laserpoints of the trashbin are deemed “unclassified” andwe
add them as no-enter areas on the behavior map. The no-enter area
of the trashbin and the human makes it sure that the robot cannot
move further. However, after the human BA is removed, the robot
can pass the trashbin from the left side.

6 Conclusion

6.1 Discussion

The technical contribution of this paper is a robot programming
methodology to adapt the low-level motion control specifications
to the spatial context by means of a semantically annotated map.
However, the biggest impact is expected from how the three-layered
structure of the technical contribution distributes the responsibilities
of the programming of mobile robot applications between the control
engineers at the robot vendor’s side and the application developers
at the robot user’s side. The latter “program” their application by
adapting semantic areas on a map to influence (but not to command)
the robots’ motion actions. To do so, they have a set of semantic
behavior primitives at their disposal, and our desire is to have such
a set (eventually, sooner, or later) standardized by a consortium
of robot vendors. The control engineers in each such vendor are
responsible for letting their robots interpret the semantic behavior
map and turn them in efficiently executed robot motion. The overall
state of the practice in the domain of mobile robotics can then evolve
gradually and incrementally with new versions of the standardized
semantic primitives. Not unlike the approach that is behind the
tremendous success of “the Web” over the last 30 years, driven by
evolving and vendor-neutral standardization of the HTML, CSS,
and Javascript primitives. The focus of this paper is on the semantic
behaviors, and the relevant “Key Performance Indicators (KPIs)”
are the semantic consistency and composability: to what extent can
application developers be sure that their combinations of semantic
behaviors in geometric areas on a map result in the expected
behavior of the robots? The current state of our research cannot
yet measure these KPIs in a quantitative way, so our contribution
is to explain how the presented set of semantic primitives and its
underlying three-layer approach are designed with consistency and
composability in mind, in such a way that scientific refutability can
be applied to the various individual design decisions that we have
made.

In real-world robotics applications, a major KPI is
“performance”: how quickly, accurately, and reliably will the

generated robot motions be? This design driver is (only) indirectly
in scope of this paper: we advocate using a constraint-based
optimization approach (such as model-predictive control) for the
low-level motion control. This approach is not yet popular in the
mobile robotics industry, not in the least, because it is significantly
more complex than the mainstream approach of instantaneous
velocity-based trajectory. However, its higher complexity is exactly
of the type that is needed to exploit the semantic richness, and the
online reactivity, that comes from the contributions of this paper.
The “optimization” complexity is, almost by definition, also the
enabler of higher performance. It is, however, too soon to be able to
provide meaningful system-level performance measures.

From a technical point of view, the transformation from the
semantic layer to the control layer (that is an essential component
of the presented approach) is more complex than “just” filling in
motion control templates (as they exist in somehigher programming
languages such as C++ or Java) with numerical parameters that are
derived from the symbolic representations of semantic behaviors.
Indeed, there exist many dependencies between these numerical
parameters, such as priorities, or other non-linear constraint
relations. Hence, techniques from formal knowledge representation
and reasoning are required. Also, the success of the “semantic Web”
technologies (RDF, OWL, JSON-LD, …) is an excellent inspiration
for our future work. In the current implementations behind the
experiments reported in this paper, we have experimented with
graph databases (such as Gremlin and Grakn) and with RDF/JSON-
LD tooling (such as the Python rdflibs library), but eventually, we
had to go to an ad hoc implementation of the reasoning, mostly
because of the lowmaturity of the “real-time code generation” that is
currently available in the mentioned “knowledge-based” toolchains.

This paper introduces amethodology to compose behavior areas
which guide the robot’s motion, but it still lacks complete and
constructive guidelines about how to choose and design behavior
areas for a given application context, i.e., how to design proper
semantic behaviors. The paper also does not guarantee that the
methodology yields a geometric map with behavior areas that are
consistent, optimal, or even free of decision-making conflicts. We
do hypothesize that the methodology is a step forward toward
supporting 1) application developers to create more complex
systems, via only the semantic configuration of geometric maps
and in a way that avoids vendor lock-in and 2) robot vendors
to create semantically richer “interface” standards that can lift
the level of applications in the whole domain and not just
from one single vendor. Our research hypothesis is inspired and
corroborated by a primary successful example in the (non-robotic)
real world, namely, the traffic system,where the traffic layout consists
of “behavior areas,” and the traffic code provides the semantic
relations (priorities, objective functions, …) that allow (but do not
guarantee in themselves) safe and effective driving behavior under
all circumstances and in all situations.

6.2 Future work

6.2.1 Composability of elementary behaviors
The authors are not aware of a formal mechanism that can

guarantee the creation of a proper geometric map with BAs, that is,
the one from which a COP can be passed to the low-level motion

Frontiers in Robotics and AI 21 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

controller, with a guarantee that conflicting motion constraints are
avoided. In our current implementation, the COP is realized via
decision trees where we 1) first retrieve the relevant EBs via the robot
monitors and 2) resolve the compositions of EBs via priority rules
based on the intentions of which the EBs are placed. In the situation
when more EBs or types of intention are introduced, such decision
trees become more difficult to design manually and manage.

One way to facilitate the creation of such decision trees
is introducing more relations that interlink the intentions. For
example, one could implement a hierarchy system on the intentions
such that one can enact BAs in the same manner as long as
they contain subintentions of the same superintention. For such
more complex reasoning procedures, one may benefit by using a
knowledge base such as thework ofWaibel et al. (2011), Tenorth and
Beetz (2017), and Beetz et al. (2018). Another way to facilitate the
creation of such decision trees is using some automatization tooling.
Almost certainly, some form of supervisory controller synthesis
methodology, such as that in the work of Kok et al. (2021), will
play a central role in tooling to create conflict-free composition
of EBs.

6.2.2 Perception in behavior areas
The BAs, as of now, only suggest behavior related to the motion

capabilities of the robot. We, however, do foresee possibilities
of extending the BAs to include instructions about the robot’s
perception capabilities. This is also present in the traffic system,
where warning signs such as “you are nearing a dangerous
intersection” are present to raise the awareness of the drive (DoT,
2009). The BAs could then either suggest 1) to use certain kind of
sensors or 2) to indicate the direction of interest to where the sensors
should look at. For example, if there is no wall present in the map on
the left of the robot, the robot controller would not need to execute
sensor processing algorithms to detect walls in that area.

6.2.3 Multi-robot interaction and coordination
In this work, the semantic behaviors are designed with a single

mobile robot in mind. Of course, multiple robots can read from
the same semantic map and realize coordinated movement via
the proper generation of the behavior map via SBs. Improvements
can then be made for the behavior map by 1) introducing
new formal relations that represent multi-robot coordination
dependencies, e.g., inspired by existing real-world traffic rules, and
2) allowing individual robots to share information in the form of
SAs via a common geometric map, e.g., information of perceived
obstacles.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.

Author contributions

HC, RM, and HB contributed to the conceptualization of the
study. HC, BH, and HB contributed to the design of the study. HC
and BH contributed to the experimental setup of the study. HC
wrote the draft of the manuscript. ET provided critical review of the
method and manuscript. All authors contributed to the article and
approved the submitted version.

Funding

This work received co-funding from the TKI program of the
Dutch government.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary Material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/frobt.2023.917637/
full#supplementary-material

References

Asama, H., Ozaki, K., Itakura, H., Matsumoto, A., Ishida, Y., and Endo, I.
(1991). “Collision avoidance among multiple mobile robots based on rules and
communication,” inProceedings IROS ’91:IEEE/RSJ international workshop on intelligent
robots and systems ’91, 3, 1215–1220. doi:10.1109/IROS.1991.174665

Beetz, M., Beßler, D., Haidu, A., Pomarlan, M., Bozcuoğlu, A., and Bartels, G. (2018).
“Know rob 2.0—A 2nd generation knowledge processing framework for cognition-
enabled robotic agents,” in In 2018 IEEE international conference on robotics and
automation (ICRA) (IEEE), 512–519. doi:10.1109/ICRA.2018.8460964

Brooks, R. (1986). A robust layered control system for amobile robot. IEEE J. Robotics
Automation 2, 14–23. doi:10.1109/JRA.1986.1087032

Caloud, P., Choi, W., Latombe, J.-C., Le Pape, C., and Yim, M. (1990).
“Indoor automation with many mobile robots,” in EEE international workshop on
intelligent robots and systems, towards a new frontier of applications, 1, 67–72.
doi:10.1109/IROS.1990.262370

Campos, T., Pacheck, A., Hoffman, G., and Kress-Gazit, H. (2019). “Smt-based
control and feedback for social navigation,” in 2019 international conference
on robotics and automation (ICRA), 5005–5011. doi:10.1109/ICRA.2019.
8794208

Chen, D., Zhuang, M., Zhong, X., Wu, W., and Liu, Q. (2022). Rspmp: real-time
semantic perception and motion planning for autonomous navigation of unmanned

Frontiers in Robotics and AI 22 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
https://www.frontiersin.org/articles/10.3389/frobt.2023.917637/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2023.917637/full#supplementary-material
https://doi.org/10.1109/IROS.1991.174665
https://doi.org/10.1109/ICRA.2018.8460964
https://doi.org/10.1109/JRA.1986.1087032
https://doi.org/10.1109/IROS.1990.262370
https://doi.org/10.1109/ICRA.2019.8794208
https://doi.org/10.1109/ICRA.2019.8794208
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chen et al. 10.3389/frobt.2023.917637

ground vehicle in off-road environments. Appl. Intell., 1–17. doi:10.1007/s10489-022-
03283-z

Deeken, H., Wiemann, T., and Hertzberg, J. (2018). Grounding semantic maps
in spatial databases. Robotics Aut. Syst. 105, 146–165. doi:10.1016/j.robot.2018.03.
011

Deeken,H.,Wiemann,T., Lingemann,K., andHertzberg, J. (2015). “Serap-a semantic
environment mapping framework,” in 2015 European conference on mobile robots
(ECMR) (IEEE), 1–6.

Dornhege, C., Eyerich, P., Keller, T., Brenner, M., and Nebel, B. (2010). “Integrating
task and motion planning using semantic attachments,” in Workshops at the twenty-
fourth AAAI conference on artificial intelligence.

DoT (2009). Manual on uniform traffic control devices: For streets and highways. U.S.
Dept. of Transportation, Federal Highway Administration.

Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation.
Computer 22, 46–57. doi:10.1109/2.30720

Faroni, M., Beschi, M., Ghidini, S., Pedrocchi, N., Umbrico, A., Orlandini, A., et al.
(2020). “A layered control approach to human-aware task and motion planning for
human-robot collaboration,” in 2020 29th IEEE international conference on robot and
human interactive communication (RO-MAN) (IEEE), 1204–1210.

Fox, M., and Long, D. (2003). Pddl2.1: an extension to pddl for expressing temporal
planning domains. J. Artif. Intell. Res. 20, 61–124. doi:10.1613/jair.1129

Galindo, C., Saffiotti, A., Coradeschi, S., Buschka, P., Fernandez-Madrigal, J.,
and Gonzalez, J. (2005). “Multi-hierarchical semantic maps for mobile robotics,” in
2005 IEEE/RSJ international conference on intelligent robots and systems, 2278–2283.
doi:10.1109/IROS.2005.1545511

Gerevini, A. E., Haslum, P., Long, D., Saetti, A., and Dimopoulos, Y. (2009).
Deterministic planning in the fifth international planning competition: PDDL3
and experimental evaluation of the planners. Artif. Intell. 173, 619–668.
doi:10.1016/j.artint.2008.10.012

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4, 100–107.
doi:10.1109/tssc.1968.300136

Heimann,O., andGuhl, J. (2020). “Industrial robot programmingmethods: a scoping
review,” in 2020 25th IEEE international conference on emerging technologies and factory
automation (ETFA) (IEEE), 1, 696–703.

Hendrikx, R., Pauwels, P., Torta, E., Bruyninckx, H., and van de Molengraft,
M. (2021). “Connecting semantic building information models and robotics: an
application to 2d lidar-based localization,” in 2021 IEEE international conference on
robotics and automation (ICRA) (IEEE), 11654–11660. doi:10.119/ICRA48506.2021.
9561129

Joo, S., Bae, S., Choi, J., Park, H., Lee, S., You, S., et al. (2022). A flexible semantic
ontological model framework and its application to robotic navigation in large dynamic
environments. Electronics 11, 2420. doi:10.3390/electronics11152420

Kato, S., Nishiyama, S., and Takeno, J. (1992). Coordinating mobile robots by
applying traffic rules. Proc. IEEE/RSJ Int. Conf. Intelligent Robots Syst. 3, 1535–1541.
doi:10.1109/IROS.1992.594218

Kim, T., Kon, K., and Matsuno, F. (2016). Region with velocity constraints: map
information and its usage for safe motion planning of a mobile robot in a public
environment. Adv. Robot. 30, 635–651. doi:10.1080/01691864.2016.1152198

Kok, J., Torta, E., Reniers, M., Mortel-Fronczak, J., and Molengraft, M. (2021).
Synthesis-based engineering of supervisory controllers for autonomous robotic
navigation. IFAC-PapersOnLine 54, 259–264. 16th IFAC Symposium on Control in
Transportation Systems CTS 2021. doi:10.1016/j.ifacol.2021.06.031

Kostavelis, I., Charalampous, K., Gasteratos, A., and Tsotsos, J. K. (2016). Robot
navigation via spatial and temporal coherent semantic maps. Eng. Appl. Artif. Intell. 48,
173–187. doi:10.1016/j.engappai.2015.11.004

Kuipers, B., Feigenbaum, E., Hart, P., and Nilsson, N. (2017). Shakey: from
conception to history. Ai Mag. 38, 88–103. doi:10.1609/aimag.v38i1.2716

Kuipers, B. (2000). The spatial semantic hierarchy. Artif. Intell. 119, 191–233.
doi:10.1016/S0004-3702(00)00017-5

LaValle, S. M., and Kuffner, J. J., Jr (2001). Randomized kinodynamic planning. Int.
J. robotics Res. 20, 378–400. doi:10.1177/02783640122067453

Macenski, S., Martín, F., White, R., and Clavero, J. G. (2020). “The
marathon 2: a navigation system,” in 2020 IEEE/RSJ international conference on
intelligent robots and systems (IROS), 2718–2725. doi:10.1109/IROS45743.2020.
9341207

Mainprice, J., Sisbot, E., Jaillet, L., Cortés, J., Alami, R., and Siméon, T.
(2011). “Planning human-aware motions using a sampling-based costmap planner,”
in 2011 IEEE international conference on robotics and automation, 5012–5017.
doi:10.1109/ICRA.2011.5980048

Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., and Konolige, K. (2010).
“The office marathon: robust navigation in an indoor office environment,”
in 2010 IEEE international conference on robotics and automation, 300–307.
doi:10.1109/ROBOT.2010.5509725

Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. (2000). Constrained
model predictive control: stability and optimality. Automatica 36, 789–814.
doi:10.1016/s0005-1098(99)00214-9

Mercy, T., Hostens, E., and Pipeleers, G. (2018). “Online motion planning for
autonomous vehicles in vast environments,” in 2018 IEEE 15th international workshop
on advanced motion control (AMC), 114–119. doi:10.1109/AMC.2019.8371072

Moravec, H., and Elfes, A. (1985). “High resolution maps from wide angle sonar,” in
Proceedings. 1985 IEEE international conference on robotics and automation, 2, 116–121.
doi:10.1109/ROBOT.1985.1087316

Neggers, M., Cuijpers, R., Ruijten, P., and Ijsselsteijn, W. (2022). Determining shape
and size of personal space of a human when passed by a robot. Int. J. Soc. Robotics 14,
561–572. doi:10.1007/s12369-021-00805-6

Nüchter, A., and Hertzberg, J. (2008). Towards semantic maps for mobile
robots. Robotics Aut. Syst. 56, 915–926. Semantic Knowledge in Robotics.
doi:10.1016/j.robot.2008.08.001

Pierson, A., Schwarting, W., Karaman, S., and Rus, D. (2018). “Navigating congested
environments with risk level sets,” in 2018 IEEE international conference on robotics and
automation (ICRA), 5712–5719. doi:10.1109/ICRA.2018.8460697

Ravankar, A., Ravankar, A., Hoshino, Y., and Kobayashi, Y. (2019). “Virtual obstacles
for safe mobile robot navigation,” in 2019 8th international congress on advanced applied
informatics (IIAI-AAI), 552–555. doi:10.1109/IIAI-AAI.2019.00118

Ruiz-Sarmiento, J., Galindo, C., and Gonzalez-Jimenez, J. (2017). Building
multiversal semantic maps for mobile robot operation. Knowledge-Based Syst. 119,
257–272. doi:10.1016/j.knosys.2016.12.016

Sack, J.-R., and Urrutia, J. (1999). Handbook of computational geometry. Elsevier.

Shi, D., Collins, E. G., Jr, Goldiez, B., Donate, A., Liu, X., and Dunlap, D.
(2008). “Human-aware robot motion planning with velocity constraints,” in 2008
international symposium on collaborative technologies and systems (IEEE), 490–
497.

Sünderhauf, N., Dayoub, F., McMahon, S., Talbot, B., Schulz, R., Corke, P., et al.
(2016). “Place categorization and semantic mapping on a mobile robot,” in 2016
IEEE international conference on robotics and automation (ICRA) (IEEE), 5729–
5736.

Tenorth, M., and Beetz, M. (2017). Representations for robot knowledge in the
knowrob framework. Artif. Intell. 247, 151–169. Special Issue on AI and Robotics.
doi:10.1016/j.artint.2015.05.010

Varanka, D., and Usery, E. (2018). The map as knowledge base. Int. J. Cartogr. 4,
201–223. doi:10.1080/23729333.2017.1421004

Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Galvez-Lopez, D., et al.
(2011). Roboearth. IEEERobot. Autom.Mag. 18, 69–82. doi:10.1109/MRA.2011.941632

Wilde,N., Blidaru,A., Smith, S. L., andKulić,D. (2020). Improving user specifications
for robot behavior through active preference learning: framework and evaluation. Int.
J. Robotics Res. 39, 651–667. doi:10.1177/0278364920910802

Wilde, N., Kulić, D., and Smith, S. L. (2018). “Learning user preferences in robot
motion planning through interaction,” in 2018 IEEE international conference on robotics
and automation (ICRA) (IEEE), 619–626.

Frontiers in Robotics and AI 23 frontiersin.org

https://doi.org/10.3389/frobt.2023.917637
https://doi.org/10.1007/s10489-022-03283-z
https://doi.org/10.1007/s10489-022-03283-z
https://doi.org/10.1016/j.robot.2018.03.011
https://doi.org/10.1016/j.robot.2018.03.011
https://doi.org/10.1109/2.30720
https://doi.org/10.1613/jair.1129
https://doi.org/10.1109/IROS.2005.1545511
https://doi.org/10.1016/j.artint.2008.10.012
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.119/ICRA48506.2021.9561129
https://doi.org/10.119/ICRA48506.2021.9561129
https://doi.org/10.3390/electronics11152420
https://doi.org/10.1109/IROS.1992.594218
https://doi.org/10.1080/01691864.2016.1152198
https://doi.org/10.1016/j.ifacol.2021.06.031
https://doi.org/10.1016/j.engappai.2015.11.004
https://doi.org/10.1609/aimag.v38i1.2716
https://doi.org/10.1016/S0004-3702(00)00017-5
https://doi.org/10.1177/02783640122067453
https://doi.org/10.1109/IROS45743.2020.9341207
https://doi.org/10.1109/IROS45743.2020.9341207
https://doi.org/10.1109/ICRA.2011.5980048
https://doi.org/10.1109/ROBOT.2010.5509725
https://doi.org/10.1016/s0005-1098(99)00214-9
https://doi.org/10.1109/AMC.2019.8371072
https://doi.org/10.1109/ROBOT.1985.1087316
https://doi.org/10.1007/s12369-021-00805-6
https://doi.org/10.1016/j.robot.2008.08.001
https://doi.org/10.1109/ICRA.2018.8460697
https://doi.org/10.1109/IIAI-AAI.2019.00118
https://doi.org/10.1016/j.knosys.2016.12.016
https://doi.org/10.1016/j.artint.2015.05.010
https://doi.org/10.1080/23729333.2017.1421004
https://doi.org/10.1109/MRA.2011.941632
https://doi.org/10.1177/0278364920910802
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Related work
	2.1 Semantic maps
	2.2 Continuous parts of COPs
	2.3 Discrete parts of COPs

	3 Methodology
	3.1 Inspiration: the traffic system
	3.2 Entities of the methodology
	3.3 Impact of the methodology
	3.4 Example behavior map

	4 Implementation
	4.1 Application layer
	4.1.1 Elementary behavior representation
	4.1.2 Area of Execution representation
	4.1.3 Spatial query representation

	4.2 Control layer
	4.2.1 Generating and updating the behavior map.
	4.2.2 Formulation of the constraint-based optimization problem
	4.2.3 Monitors
	4.2.4 EBs and control specifications
	4.2.5 Resolving objectives and constraints

	5 Experimental validation
	5.1 Experimental setting
	5.2 Results
	5.2.1 Changing behavior via priority between intentions
	5.2.2 Changing behavior real time by adding and composing behavior areas
	5.2.3 Reconfiguring the behavior map
	5.2.4 Dealing with dynamic or unknown objects

	6 Conclusion
	6.1 Discussion
	6.2 Future work
	6.2.1 Composability of elementary behaviors
	6.2.2 Perception in behavior areas
	6.2.3 Multi-robot interaction and coordination

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary Material
	References

