31,031 research outputs found

    A New Low-Mass Eclipsing Binary from SDSS-II

    Full text link
    We present observations of a new low-mass double-lined eclipsing binary system discovered using repeat observations of the celestial equator from the Sloan Digital Sky Survey II. Using near-infrared photometry and optical spectroscopy we have measured the properties of this short-period [P=0.407037(14) d] system and its two components. We find the following parameters for the two components: M_1=0.272+/-0.020 M_sun, R_1=0.268+/-0.010 R_sun, M_2=0.240+/-0.022 M_sun, R_2=0.248+/-0.0090 R_sun, T_1=3320+/-130 K, T_2=3300+/-130 K. The masses and radii of the two components of this system agree well with theoretical expectations based on models of low-mass stars, within the admittedly large errors. Future synoptic surveys like Pan-STARRS and LSST will produce a wealth of information about low-mass eclipsing systems and should make it possible, with an increased reliance on follow-up observations, to detect many systems with low-mass and sub-stellar companions. With the large numbers of objects for which these surveys will produce high-quality photometry, we suggest that it becomes possible to identify such systems even with sparse time sampling and a relatively small number of individual observations.Comment: 15 Pages, 9 Figures, 6 Tables. Replaced with version accepted to Ap

    Report of IAU Commission 30 on Radial Velocities (2006-2009)

    Get PDF
    Brief summaries are given on the following subjects: Radial velocities and exoplanets (Toward Earth-mass planets; Retired A stars and their planets; Current status and prospects); Toward higher radial velocity precision; Radial velocities and asteroseismology; Radial velocities in Galactic and extragalactic clusters; Radial velocities for field giants; Galactic structure -- Large surveys (The Geneva-Copenhagen Survey; Sloan Digital Sky Survey; RAVE); Working groups (WG on radial velocity standards; WG on stellar radial velocity bibliography; WG on the catalogue of orbital elements of spectroscopic binaries [SB9]).Comment: 11 pages, to appear in the IAU Transactions Vol. XXVIIA, Reports on Astronomy 2006-2009, ed. Karel van der Hucht. Editor: G. Torre

    Spin-torque driven magnetic vortex self-oscillations in perpendicular magnetic fields

    Full text link
    We have employed complete micromagnetic simulations to analyze dc current driven self-oscillations of a vortex core in a spin-valve nanopillar in a perpendicular field by including the coupled effect of the spin-torque and the magnetostatic field computed self-consistently for the entire spin-valve. The vortex in the thicker nanomagnet moves along a quasi-elliptical trajectory that expands with applied current, resulting in blue-shifting of the frequency, while the magnetization of the thinner nanomagnet is non-uniform due to the bias current. The simulations explain the experimental magnetoresistance-field hysteresis loop and yield good agreement with the measured frequency vs. current behavior of this spin-torque vortex oscillator.Comment: 10 pages, 3 figures, to be appear on AP

    GHASP: an H{\alpha} kinematic survey of spiral and irregular galaxies -- IX. The NIR, stellar and baryonic Tully-Fisher relations

    Full text link
    We studied, for the first time, the near infrared, stellar and baryonic Tully-Fisher relations for a sample of field galaxies taken from an homogeneous Fabry-Perot sample of galaxies (the GHASP survey). The main advantage of GHASP over other samples is that maximum rotational velocities were estimated from 2D velocity fields, avoiding assumptions about the inclination and position angle of the galaxies. By combining these data with 2MASS photometry, optical colors, HI masses and different mass-to-light ratio estimators, we found a slope of 4.48\pm0.38 and 3.64\pm0.28 for the stellar and baryonic Tully-Fisher relation, respectively. We found that these values do not change significantly when different mass-to-light ratios recipes were used. We also point out, for the first time, that rising rotation curves as well as asymmetric rotation curves show a larger dispersion in the Tully-Fisher relation than flat ones or than symmetric ones. Using the baryonic mass and the optical radius of galaxies, we found that the surface baryonic mass density is almost constant for all the galaxies of this sample. In this study we also emphasize the presence of a break in the NIR Tully-Fisher relation at M(H,K)\sim-20 and we confirm that late-type galaxies present higher total-to-baryonic mass ratios than early-type spirals, suggesting that supernova feedback is actually an important issue in late-type spirals. Due to the well defined sample selection criteria and the homogeneity of the data analysis, the Tully-Fisher relation for GHASP galaxies can be used as a reference for the study of this relation in other environments and at higher redshifts.Comment: 16 pages, 6 figures. Accepted for publication in MNRA

    Eye-CU: Sleep Pose Classification for Healthcare using Multimodal Multiview Data

    Full text link
    Manual analysis of body poses of bed-ridden patients requires staff to continuously track and record patient poses. Two limitations in the dissemination of pose-related therapies are scarce human resources and unreliable automated systems. This work addresses these issues by introducing a new method and a new system for robust automated classification of sleep poses in an Intensive Care Unit (ICU) environment. The new method, coupled-constrained Least-Squares (cc-LS), uses multimodal and multiview (MM) data and finds the set of modality trust values that minimizes the difference between expected and estimated labels. The new system, Eye-CU, is an affordable multi-sensor modular system for unobtrusive data collection and analysis in healthcare. Experimental results indicate that the performance of cc-LS matches the performance of existing methods in ideal scenarios. This method outperforms the latest techniques in challenging scenarios by 13% for those with poor illumination and by 70% for those with both poor illumination and occlusions. Results also show that a reduced Eye-CU configuration can classify poses without pressure information with only a slight drop in its performance.Comment: Ten-page manuscript including references and ten figure
    • …
    corecore