6,679 research outputs found

    Semiquantitative theory of electronic Raman scattering from medium-size quantum dots

    Full text link
    A consistent semiquantitative theoretical analysis of electronic Raman scattering from many-electron quantum dots under resonance excitation conditions has been performed. The theory is based on random-phase-approximation-like wave functions, with the Coulomb interactions treated exactly, and hole valence-band mixing accounted for within the Kohn-Luttinger Hamiltonian framework. The widths of intermediate and final states in the scattering process, although treated phenomenologically, play a significant role in the calculations, particularly for well above band gap excitation. The calculated polarized and unpolarized Raman spectra reveal a great complexity of features and details when the incident light energy is swept from below, through, and above the quantum dot band gap. Incoming and outgoing resonances dramatically modify the Raman intensities of the single particle, charge density, and spin density excitations. The theoretical results are presented in detail and discussed with regard to experimental observations.Comment: Submitted to Phys. Rev.

    Decoherence in a double-slit quantum eraser

    Full text link
    We study and experimentally implement a double-slit quantum eraser in the presence of a controlled decoherence mechanism. A two-photon state, produced in a spontaneous parametric down conversion process, is prepared in a maximally entangled polarization state. A birefringent double-slit is illuminated by one of the down-converted photons, and it acts as a single-photon two-qubits controlled not gate that couples the polarization with the transversal momentum of these photons. The other photon, that acts as a which-path marker, is sent through a Mach-Zehnder-like interferometer. When the interferometer is partially unbalanced, it behaves as a controlled source of decoherence for polarization states of down-converted photons. We show the transition from wave-like to particle-like behavior of the signal photons crossing the double-slit as a function of the decoherence parameter, which depends on the length path difference at the interferometer.Comment: Accepted in Physical Review

    ArduiTaM: accurate and inexpensive NMR auto tune and match system

    Get PDF
    We introduce a low-complexity, low-cost, yet sufficiently accurate automatic tune and match system for NMR and MRI applications. The ArduiTaM builds upon an Arduino Uno embedded system that drives a commercial frequency synthesiser chip to perform a frequency sweep around the Larmor frequency. The generated low-power signal is fed to the NMR coil, after which the reflected waves are detected using a directional coupler and amplified. The signal shape is then extracted by means of an envelope detector and passed on to the Arduino, which performs a dip search while continuously generating actuator control patterns to adjust the tune and match capacitors. The process stops once the signal dip reaches the Larmor frequency. The ArduiTaM works readily with any spectrometer frequency in the range from 1 to 23&thinsp;T. The speed of the ArduiTaM is mainly limited by the clock of the Arduino and the capacitor actuation mechanism. The Arduino can easily be replaced by a higher-speed microcontroller, and varactors can replace stepper-motor controlled variable capacitors. The ArduiTaM is made available in open source, and so is easily duplicated.</p

    Control of quantum interference in the quantum eraser

    Full text link
    We have implemented an optical quantum eraser with the aim of studying this phenomenon in the context of state discrimination. An interfering single photon is entangled with another one serving as a which-path marker. As a consequence, the visibility of the interference as well as the which-path information are constrained by the overlap (measured by the inner product) between the which-path marker states, which in a more general situation are non-orthogonal. In order to perform which-path or quantum eraser measurements while analyzing non-orthogonal states, we resort to a probabilistic method for the unambiguous modification of the inner product between the two states of the which-path marker in a discrimination-like process.Comment: Submitted to New Journal of Physics, March 200

    The Low Redshift survey at Calar Alto (LoRCA)

    Get PDF
    The Baryon Acoustic Oscillation (BAO) feature in the power spectrum of galaxies provides a standard ruler to measure the accelerated expansion of the Universe. To extract all available information about dark energy, it is necessary to measure a standard ruler in the local, z<0.2, universe where dark energy dominates most the energy density of the Universe. Though the volume available in the local universe is limited, it is just big enough to measure accurately the long 100 Mpc/h wave-mode of the BAO. Using cosmological N-body simulations and approximate methods based on Lagrangian perturbation theory, we construct a suite of a thousand light-cones to evaluate the precision at which one can measure the BAO standard ruler in the local universe. We find that using the most massive galaxies on the full sky (34,000 sq. deg.), i.e. a K(2MASS)<14 magnitude-limited sample, one can measure the BAO scale up to a precision of 4\% and 1.2\% using reconstruction). We also find that such a survey would help to detect the dynamics of dark energy.Therefore, we propose a 3-year long observational project, named the Low Redshift survey at Calar Alto (LoRCA), to observe spectroscopically about 200,000 galaxies in the northern sky to contribute to the construction of aforementioned galaxy sample. The suite of light-cones is made available to the public.Comment: 15 pages. Accepted in MNRAS. Please visit our website: http://lorca-survey.ft.uam.es

    The Low Redshift survey at Calar Alto (LoRCA)

    Get PDF
    The Baryon Acoustic Oscillation (BAO) feature in the power spectrum of galaxies provides a standard ruler to measure the accelerated expansion of the Universe. To extract all available information about dark energy, it is necessary to measure a standard ruler in the local, z<0.2, universe where dark energy dominates most the energy density of the Universe. Though the volume available in the local universe is limited, it is just big enough to measure accurately the long 100 Mpc/h wave-mode of the BAO. Using cosmological N-body simulations and approximate methods based on Lagrangian perturbation theory, we construct a suite of a thousand light-cones to evaluate the precision at which one can measure the BAO standard ruler in the local universe. We find that using the most massive galaxies on the full sky (34,000 sq. deg.), i.e. a K(2MASS)<14 magnitude-limited sample, one can measure the BAO scale up to a precision of 4\% and 1.2\% using reconstruction). We also find that such a survey would help to detect the dynamics of dark energy.Therefore, we propose a 3-year long observational project, named the Low Redshift survey at Calar Alto (LoRCA), to observe spectroscopically about 200,000 galaxies in the northern sky to contribute to the construction of aforementioned galaxy sample. The suite of light-cones is made available to the public.Comment: 15 pages. Accepted in MNRAS. Please visit our website: http://lorca-survey.ft.uam.es

    Siphon-Controlled Automation on a Lab-on-a-Disc Using Event-Triggered Dissolvable Film Valves

    Get PDF
    Within microfluidic technologies, the centrifugal microfluidic "Lab-on-a-Disc" (LoaD) platform offers great potential for use at the PoC and in low-resource settings due to its robustness and the ability to port and miniaturize \u27wet bench\u27 laboratory protocols. We present the combination of \u27event-triggered dissolvable film valves\u27 with a centrifugo-pneumatic siphon structure to enable control and timing, through changes in disc spin-speed, of the release and incubations of eight samples/reagents/wash buffers. Based on these microfluidic techniques, we integrated and automated a chemiluminescent immunoassay for detection of the CVD risk factor marker C-reactive protein displaying a limit of detection (LOD) of 44.87 ng mL−1^{-1} and limit of quantitation (LoQ) of 135.87 ng mL−1^{-1}

    Optical and Electrical Properties of Thin Films of CuS Nanodisks Ensembles Annealed in a Vacuum and Their Photocatalytic Activity

    Get PDF
    Effects on the optical, electrical, and photocatalytic properties of undoped CuS thin films nanodisks vacuum annealed at different temperatures were investigated. The chemical bath prepared CuS thin films were obtained at 40°C on glass substrates. The grain size of 13.5±3.5 nm was computed directly from high-resolution transmission electron microscopy (HRTEM) images. The electrical properties were measured by means of both Hall effect at room temperature and dark resistivity as a function of the absolute temperature 100–330 K. The activation energy values were calculated as 0.007, 0.013, and 0.013 eV for 100, 150, and 200°C, respectively. The energy band gap of the films varied in the range of 1.98 up to 2.34 eV. The photocatalytic activity of the CuS thin film was evaluated by employing the degradation of aqueous methylene blue solution in the presence of hydrogen peroxide. The CuS sample thin film annealed in vacuum at 150°C exhibited the highest photocatalytic activity in presence of hydrogen peroxide
    • 

    corecore