6 research outputs found

    MEGARA, the R=6000-20000 IFU and MOS of GTC

    Get PDF
    MEGARA is the new generation IFU and MOS optical spectrograph built for the 10.4m Gran Telescopio CANARIAS (GTC). The project was developed by a consortium led by UCM (Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain) and UPM (Spain). The instrument arrived to GTC on March 28th 2017 and was successfully integrated and commissioned at the telescope from May to August 2017. During the on-sky commissioning we demonstrated that MEGARA is a powerful and robust instrument that provides on-sky intermediate-to-high spectral resolutions RFWHM ~ 6,000, 12,000 and 20,000 at an unprecedented efficiency for these resolving powers in both its IFU and MOS modes. The IFU covers 12.5 x 11.3 arcsec 2 while the MOS mode allows observing up to 92 objects in a region of 3.5 x 3.5 arcmin 2 . In this paper we describe the instrument main subsystems, including the Folded-Cassegrain unit, the fiber link, the spectrograph, the cryostat, the detector and the control subsystems, and its performance numbers obtained during commissioning where the fulfillment of the instrument requirements is demonstrated. © 2018 SPIE

    First scientific observations with MEGARA at GTC

    Get PDF
    On June 25th 2017, the new intermediate-resolution optical IFU and MOS of the 10.4-m GTC had its first light. As part of the tests carried out to verify the performance of the instrument in its two modes (IFU and MOS) and 18 spectral setups (identical number of VPHs with resolutions R=6000-20000 from 0.36 to 1 micron) a number of astronomical objects were observed. These observations show that MEGARA@GTC is called to fill a niche of high-throughput, intermediateresolution IFU and MOS observations of extremely-faint narrow-lined objects. Lyman-α absorbers, star-forming dwarfs or even weak absorptions in stellar spectra in our Galaxy or in the Local Group can now be explored to a new level. Thus, the versatility of MEGARA in terms of observing modes and spectral resolution and coverage will allow GTC to go beyond current observational limits in either depth or precision for all these objects. The results to be presented in this talk clearly demonstrate the potential of MEGARA in this regard

    Toward next-generation primate neuroscience: A collaboration-based strategic plan for integrative neuroimaging

    No full text
    Open science initiatives are creating opportunities to increase research coordination and impact in nonhuman primate (NHP) imaging. The PRIMatE Data and Resource Exchange community recently developed a collaboration-based strategic plan to advance NHP imaging as an integrative approach for multiscale neuroscience
    corecore