376 research outputs found
Impact of Processing-Resource Sharing on the Placement of Chained Virtual Network Functions
Network Function Virtualization (NFV) provides higher flexibility for network
operators and reduces the complexity in network service deployment. Using NFV,
Virtual Network Functions (VNF) can be located in various network nodes and
chained together in a Service Function Chain (SFC) to provide a specific
service. Consolidating multiple VNFs in a smaller number of locations would
allow decreasing capital expenditures. However, excessive consolidation of VNFs
might cause additional latency penalties due to processing-resource sharing,
and this is undesirable, as SFCs are bounded by service-specific latency
requirements. In this paper, we identify two different types of penalties
(referred as "costs") related to the processingresource sharing among multiple
VNFs: the context switching costs and the upscaling costs. Context switching
costs arise when multiple CPU processes (e.g., supporting different VNFs) share
the same CPU and thus repeated loading/saving of their context is required.
Upscaling costs are incurred by VNFs requiring multi-core implementations,
since they suffer a penalty due to the load-balancing needs among CPU cores.
These costs affect how the chained VNFs are placed in the network to meet the
performance requirement of the SFCs. We evaluate their impact while considering
SFCs with different bandwidth and latency requirements in a scenario of VNF
consolidation.Comment: Accepted for publication in IEEE Transactions on Cloud Computin
A Scalable Approach for Service Chain (SC) Mapping with Multiple SC Instances in a Wide-Area Network
Network Function Virtualization (NFV) aims to simplify deployment of network
services by running Virtual Network Functions (VNFs) on commercial
off-the-shelf servers. Service deployment involves placement of VNFs and
in-sequence routing of traffic flows through VNFs comprising a Service Chain
(SC). The joint VNF placement and traffic routing is called SC mapping. In a
Wide-Area Network (WAN), a situation may arise where several traffic flows,
generated by many distributed node pairs, require the same SC; then, a single
instance (or occurrence) of that SC might not be enough. SC mapping with
multiple SC instances for the same SC turns out to be a very complex problem,
since the sequential traversal of VNFs has to be maintained while accounting
for traffic flows in various directions. Our study is the first to deal with
the problem of SC mapping with multiple SC instances to minimize network
resource consumption. We first propose an Integer Linear Program (ILP) to solve
this problem. Since ILP does not scale to large networks, we develop a
column-generation-based ILP (CG-ILP) model. However, we find that exact
mathematical modeling of the problem results in quadratic constraints in our
CG-ILP. The quadratic constraints are made linear but even the scalability of
CG-ILP is limited. Hence, we also propose a two-phase column-generation-based
approach to get results over large network topologies within reasonable
computational times. Using such an approach, we observe that an appropriate
choice of only a small set of SC instances can lead to a solution very close to
the minimum bandwidth consumption. Further, this approach also helps us to
analyze the effects of number of VNF replicas and number of NFV nodes on
bandwidth consumption when deploying these minimum number of SC instances.Comment: arXiv admin note: substantial text overlap with arXiv:1704.0671
Virtual-Mobile-Core Placement for Metro Network
Traditional highly-centralized mobile core networks (e.g., Evolved Packet
Core (EPC)) need to be constantly upgraded both in their network functions and
backhaul links, to meet increasing traffic demands. Network Function
Virtualization (NFV) is being investigated as a potential cost-effective
solution for this upgrade. A virtual mobile core (here, virtual EPC, vEPC)
provides deployment flexibility and scalability while reducing costs,
network-resource consumption and application delay. Moreover, a distributed
deployment of vEPC is essential for emerging paradigms like Multi-Access Edge
Computing (MEC). In this work, we show that significant reduction in
networkresource consumption can be achieved as a result of optimal placement of
vEPC functions in metro area. Further, we show that not all vEPC functions need
to be distributed. In our study, for the first time, we account for vEPC
interactions in both data and control planes (Non-Access Stratum (NAS)
signaling procedure Service Chains (SCs) with application latency requirements)
using a detailed mathematical model
Service Chain (SC) Mapping with Multiple SC Instances in a Wide Area Network
Network Function Virtualization (NFV) aims to simplify deployment of network
services by running Virtual Network Functions (VNFs) on commercial
off-the-shelf servers. Service deployment involves placement of VNFs and
in-sequence routing of traffic flows through VNFs comprising a Service Chain
(SC). The joint VNF placement and traffic routing is usually referred as SC
mapping. In a Wide Area Network (WAN), a situation may arise where several
traffic flows, generated by many distributed node pairs, require the same SC,
one single instance (or occurrence) of that SC might not be enough. SC mapping
with multiple SC instances for the same SC turns out to be a very complex
problem, since the sequential traversal of VNFs has to be maintained while
accounting for traffic flows in various directions. Our study is the first to
deal with SC mapping with multiple SC instances to minimize network resource
consumption. Exact mathematical modeling of this problem results in a quadratic
formulation. We propose a two-phase column-generation-based model and solution
in order to get results over large network topologies within reasonable
computational times. Using such an approach, we observe that an appropriate
choice of only a small set of SC instances can lead to solution very close to
the minimum bandwidth consumption
Insights from Analysis of Video Streaming Data to Improve Resource Management
Today a large portion of Internet traffic is video. Over The Top (OTT)
service providers offer video streaming services by creating a large
distributed cloud network on top of a physical infrastructure owned by multiple
entities. Our study explores insights from video streaming activity by
analyzing data collected from Korea's largest OTT service provider. Our
analysis of nationwide data shows interesting characteristics of video
streaming such as correlation between user profile information (e.g., age, sex)
and viewing habits, viewing habits of users (when do the users watch? using
which devices?), viewing patterns (early leaving viewer vs. steady viewer),
etc. Video on Demand (VoD) streaming involves costly (and often limited)
compute, storage, and network resources. Findings from our study will be
beneficial for OTTs, Content Delivery Networks (CDNs), Internet Service
Providers (ISPs), and Carrier Network Operators, to improve their resource
allocation and management techniques.Comment: This is a preprint electronic version of the article accepted to IEEE
CloudNet 201
Reducing probes for quality of transmission estimation in optical networks with active learning
Estimating the quality of transmission (QoT) of a lightpath before its
establishment is a critical procedure for efficient design and
management of optical networks. Recently, supervised machine learning
(ML) techniques for QoT estimation have been proposed as an effective
alternative to well-established, yet approximated, analytic models
that often require the introduction of conservative margins to
compensate for model inaccuracies and uncertainties. Unfortunately, to
ensure high estimation accuracy, the training set (i.e., the set of
historical field data, or "samples," required to train these
supervised ML algorithms) must be very large, while in real network
deployments, the number of monitored/monitorable lightpaths is limited
by several practical considerations. This is especially true for
lightpaths with an above-threshold bit error rate (BER) (i.e.,
malfunctioning or wrongly dimensioned lightpaths), which are
infrequently observed during network operation. Samples with
above-threshold BERs can be acquired by deploying probe lightpaths,
but at the cost of increased operational expenditures and wastage of
spectral resources. In this paper, we propose to use active learning to reduce the number of probes
needed for ML-based QoT estimation. We build an estimation model based
on Gaussian processes, which allows iterative identification of those
QoT instances that minimize estimation uncertainty. Numerical results
using synthetically generated datasets show that, by using the
proposed active learning approach, we can achieve the same performance
of standard offline supervised ML methods, but with a remarkable
reduction (at least 5% and up to 75%) in the number of training
samples
A disaster-resilient multi-content optical datacenter network architecture
Cloud services based on datacenter networks are becoming very important. Optical networks are well suited to meet the demands set by the high volume of traffic between datacenters, given their high bandwidth and low-latency characteristics. In such networks, path protection against network failures is generally ensured by providing a backup path to the same destination, which is link-disjoint to the primary path. This protection fails to protect against disasters covering an area which disrupts both primary and backup resources. Also, content/service protection is a fundamental problem in datacenter networks, as the failure of a single datacenter should not cause the disappearance of a specific content/service from the network. Content placement, routing and protection of paths and content are closely related to one another, so the interaction among these should be studied together. In this work, we propose an integrated ILP formulation to design an optical datacenter network, which solves all the above-mentioned problems simultaneously. We show that our disaster protection scheme exploiting anycasting provides more protection, but uses less capacity, than dedicated single-link protection. We also show that a reasonable number of datacenters and selective content replicas with intelligent network design can provide survivability to disasters while supporting user demands
Disaster-Resilient Control Plane Design and Mapping in Software-Defined Networks
Communication networks, such as core optical networks, heavily depend on
their physical infrastructure, and hence they are vulnerable to man-made
disasters, such as Electromagnetic Pulse (EMP) or Weapons of Mass Destruction
(WMD) attacks, as well as to natural disasters. Large-scale disasters may cause
huge data loss and connectivity disruption in these networks. As our dependence
on network services increases, the need for novel survivability methods to
mitigate the effects of disasters on communication networks becomes a major
concern. Software-Defined Networking (SDN), by centralizing control logic and
separating it from physical equipment, facilitates network programmability and
opens up new ways to design disaster-resilient networks. On the other hand, to
fully exploit the potential of SDN, along with data-plane survivability, we
also need to design the control plane to be resilient enough to survive network
failures caused by disasters. Several distributed SDN controller architectures
have been proposed to mitigate the risks of overload and failure, but they are
optimized for limited faults without addressing the extent of large-scale
disaster failures. For disaster resiliency of the control plane, we propose to
design it as a virtual network, which can be solved using Virtual Network
Mapping techniques. We select appropriate mapping of the controllers over the
physical network such that the connectivity among the controllers
(controller-to-controller) and between the switches to the controllers
(switch-to-controllers) is not compromised by physical infrastructure failures
caused by disasters. We formally model this disaster-aware control-plane design
and mapping problem, and demonstrate a significant reduction in the disruption
of controller-to-controller and switch-to-controller communication channels
using our approach.Comment: 6 page
An Overview on Application of Machine Learning Techniques in Optical Networks
Today's telecommunication networks have become sources of enormous amounts of
widely heterogeneous data. This information can be retrieved from network
traffic traces, network alarms, signal quality indicators, users' behavioral
data, etc. Advanced mathematical tools are required to extract meaningful
information from these data and take decisions pertaining to the proper
functioning of the networks from the network-generated data. Among these
mathematical tools, Machine Learning (ML) is regarded as one of the most
promising methodological approaches to perform network-data analysis and enable
automated network self-configuration and fault management. The adoption of ML
techniques in the field of optical communication networks is motivated by the
unprecedented growth of network complexity faced by optical networks in the
last few years. Such complexity increase is due to the introduction of a huge
number of adjustable and interdependent system parameters (e.g., routing
configurations, modulation format, symbol rate, coding schemes, etc.) that are
enabled by the usage of coherent transmission/reception technologies, advanced
digital signal processing and compensation of nonlinear effects in optical
fiber propagation. In this paper we provide an overview of the application of
ML to optical communications and networking. We classify and survey relevant
literature dealing with the topic, and we also provide an introductory tutorial
on ML for researchers and practitioners interested in this field. Although a
good number of research papers have recently appeared, the application of ML to
optical networks is still in its infancy: to stimulate further work in this
area, we conclude the paper proposing new possible research directions
- …