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Estimating the quality of transmission (QoT) of a lightpath before its establishment is a critical procedure for
efficient design and management of optical networks. Recently, supervised machine learning (ML) techniques
for QoT estimation have been proposed as an effective alternative to well-established, yet approximated, ana-
lytic models that often require the introduction of conservative margins to compensate for model inaccuracies
and uncertainties. Unfortunately, to ensure high estimation accuracy, the training set (i.e., the set of histori-
cal field data, or “samples,” required to train these supervised ML algorithms) must be very large, while in
real network deployments, the number of monitored/monitorable lightpaths is limited by several practical
considerations. This is especially true for lightpaths with an above-threshold bit error rate (BER) (i.e., mal-
functioning or wrongly dimensioned lightpaths), which are infrequently observed during network operation.
Samples with above-threshold BERs can be acquired by deploying probe lightpaths, but at the cost of increased
operational expenditures and wastage of spectral resources. In this paper, we propose to use active learning
to reduce the number of probes needed for ML-based QoT estimation. We build an estimation model based
on Gaussian processes, which allows iterative identification of those QoT instances that minimize estimation
uncertainty. Numerical results using synthetically generated datasets show that, by using the proposed active
learning approach, we can achieve the same performance of standard offline supervised ML methods, but with a
remarkable reduction (at least 5% and up to 75%) in the number of training samples. © 2019 Optical Society of

America
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1. INTRODUCTION

In modern optical networks, following the adoption of coher-
ent transmission and of a more flexible spectrum grid, network
engineers can choose among several different transmission
configurations (e.g., multiple modulation formats and/or
different frequency-slot widths). In this context, the choice of
the most suitable transmission configuration for a new light-
path becomes a critical decision to ensure efficient resource
utilization. Hence, the ability to quickly and precisely esti-
mate the quality of transmission (QoT) of a lightpath prior
to its deployment has gained even more importance and has
attracted considerable research attention [1].

Traditionally, QoT prediction has been performed either
using computationally intensive transmission emulators (as
those based on the split-step Fourier method [2]) or based
on approximated analytic models (such as the Gaussian noise
(GN) model [3] or any of its several more recent extensions
[4]). The latter models are widely adopted today due to their

simplicity and precision, but they require the introduction of
conservative margins to account for uncertainties in the values
of some input parameters (e.g., deviation from nominal values
in hardware equipment due to aging) or incomplete knowledge
of network occupation (e.g., the presence of alien wavelengths)
or of the network configuration (e.g., the link lengths could be
not exactly known in the case of fiber rental).

Machine learning (ML) has been investigated as a possible
new direction to build tools for QoT estimation that prom-
ise to avoid the scalability or uncertainty limits of previous
approaches. The vast majority of recently proposed ML-based
QoT-estimation tools adopt offline supervised learning, i.e.,
the ML algorithms are trained using a training set of historical
data. Such datasets contain samples of transmission parameters
[as, most typically, bit error rate (BER) or optical signal-to-
noise ratio (OSNR)] collected during network operation
by optical performance monitors (OPMs) [5] located at the
receivers of already-deployed lightpaths. Each of these samples
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is associated with a set of features characterizing the considered
lightpath (e.g., length, number of traversed nodes, modulation
format used for transmission, etc.). Based on the training data,
ML algorithms extract the knowledge necessary to estimate
the QoT of future lightpaths (i.e., predicting whether their
OSNR/BER will exceed a given system threshold).

However, to obtain high estimation accuracy, the training
set needs to be sufficiently large and to contain samples that
explore the whole feature space, and such samples might not
always be available in a production network. A large number
of causes may limit the amount of collectible data (e.g., insuf-
ficient telemetry, old legacy equipment, etc.), and, in a more
general sense, data might be expensive to acquire (e.g., at the
early operation stage of the system, when historical data are
still scarce), and/or to label, and shall be extracted/queried only
when necessary. In particular, lightpaths with above-threshold
BER (i.e., exhibiting faults or malfunctions) are unlikely
to be observed in real deployments due to the conservative
system-design strategies (i.e., high margins) typically adopted
to guarantee transmission quality. To complement the train-
ing set with above-BER-threshold samples, probe lightpaths
[6] can be used to acquire data associated with critical trans-
mission configurations that would not be normally adopted
for customer traffic. However, collecting these probes incurs
additional operational costs and higher occupation of spectral
resources.

How to provide accurate ML-based QoT predictions in the
presence of small/incomplete training sets is an important and
scarcely explored research issue. In this paper, we propose an
active learning (AL) method that works on top of a ML predic-
tor based on Gaussian processes (GPs). After an initial training
with a limited number of instances, the proposed AL algorithm
iteratively asks to collect only a few selected training samples
with specific characteristics, with the intent of minimizing
the number of required samples. In particular, samples that
minimize a specifically tailored acquisition function will be
sought. Such an acquisition function is designed to maximize
the increase of prediction accuracy at every iteration [7].

The rest of the paper is organized as follows: after a brief
overview on related work in Section 2, we introduce some
background notions on GPs and AL in Section 3 and then
describe the proposed AL solution for QoT estimation in
Section 4. In Section 5, we numerically assess its performance,
showing that we can obtain higher values of the area under the
ROC curve (AUC), where ROC stands for receiver operating
characteristic, with many fewer training instances. We draw
our conclusions in Section 6.

2. RELATED WORK

Several studies on QoT estimation of unestablished lightpaths
have recently appeared (see [9] for a comprehensive survey).
References [10] and [11] adopted a cognitive case-based rea-
soning (CBR) approach, which stores in a database a list of
Q-factor measurements, together with a set of characteristics
of the associated lightpaths. When a new lightpath has to be
deployed, the table entries that exhibit the highest similarity to
the candidate lightpath are used to make an estimation of the
expected Q-factor.

A similar approach is adopted in Refs. [12] and [13], respec-
tively, to tune design margins in the presence of unknown
network parameters or to adjust the input parameters for
the GN model. In both studies, field data are collected and
ingested by a prediction tool that outputs an OSNR estimation
based on educated guesses on the unknown network/GN
model parameters.

Two alternative methods named network kriging and norm
L2 minimization are applied in Refs. [14–17] to perform QoT
estimation. These methods require the installation of probe
lightpaths carrying dummy traffic to acquire field measure-
ments to compute an estimation of the Q-factor of already
established or candidate lightpaths. As probe installation is
costly, the proposed methods explore the tradeoff of minimiza-
tion of the number of deployed probes and maximization of
the information gain. Our AL-based method is conceptually
similar: the criterion we adopt to select probe lightpaths to be
deployed is the minimization of an acquisition function that
quantifies the prediction uncertainty. However, the kriging
approach requires that the metrics characterizing a lightpath
can be expressed as a linear combination of the link-level
metrics calculated over its links. Such linearity assumption
is not necessary in our framework. Moreover, the above-
mentioned studies do not take into account the co-existence of
multiple modulation formats and focus mainly on single-rate
wavelength-division multiplexing (WDM) networks (flexi-grid
networks are addressed only in Ref. [17], assuming dual baud
rate transmission with single modulation format), whereas we
consider traffic requests of different volumes that can be served
with six different modulation formats in a flexi-grid network.

Among state-of-the-art learning algorithms, GPs, random
forests, and artificial neural networks (ANNs) have been
applied to perform the task of QoT estimation. In Ref. [18],
GP nonlinear regression is adopted to predict the BER of an
optical communication system using as features the channel
input power, lightpath length, symbol rate, and inter-channel
spacing, whereas in Ref. [6] random forests are used to predict
whether the BER of unestablished lightpaths will exceed a
given threshold, based on a set of features representing the
transmission parameters of the lightpath.

ANNs have proved to outperform other learning algo-
rithms in the task of QoT estimation [19]. In Ref. [20], a
transfer-learning approach is adopted to ensure portability of a
Q-factor prediction model over different network topologies,
without retraining it from scratch: a few new samples are used
to retrain previously learned ANN weights instead of starting
from randomly initialized ones. An ANN-based OSNR pre-
dictor is proposed in Ref. [21] and assessed using field data
gathered from an experimental testbed with WDM channels
transmitting in the range of 60–100 km. The authors of [1]
design a QoT estimator for intra-/inter-domain lightpaths
in a multi-domain network scenario with alien wavelengths.
In Ref. [22], deep graph convolutional neural networks are
adopted to estimate the QoT of unestablished lightpaths, also
capturing the impact of its deployment on already established
lightpaths in terms of crosstalk, considering a flexi-grid optical
network with multicore fibers and four different modulation
formats. The accuracy of the proposed framework is assessed
in a dynamic traffic scenario. ANNs have also been adopted
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in Ref. [23] in the context of unicast/multicast networks with
dynamic traffic, and their performance has been compared to
that of a traditional Q-factor model, showing under which
conditions it can be safely replaced by the data-driven ML
approach.

Note that all the above-mentioned learning frameworks
adopt offline supervised training or, in a few cases, online
learning (i.e., when training data become available sequentially,
e.g., in mini-batches). Similar to online learning, in our work,
the training dataset size increases as the number of iterations
grows. However, while in online learning there is usually no
control over the training data that become available, here we
propose a principled way to deploy lightpaths that minimize an
appropriate acquisition function in an AL framework. To the
best of our knowledge, ours is the first attempt to apply an AL
approach for the QoT estimation task.

AL is a growing field of research in ML with applications
in robotics [24], autoML [25], and uncertainty quantifica-
tion [26]. AL is deeply rooted in the literature of design of
experiments from statistics [27] and in Bayesian optimization
[28]. Among AL methods, GP-based [29] algorithms play a
prominent role, and they have been long used, e.g., in Bayesian
optimization algorithms for global optimization tasks [30] and
in the computer experiments literature [31,32]. Such Bayesian
optimization algorithms were then adapted to the problem of
sampling a function around a specified threshold [26,33,34].
Here, we propose an AL solution for QoT estimation based on
the acquisition function presented in Ref. [26].

3. BACKGROUND

A. Framework

An AL algorithm requires two components: a ML model that,
given a training set, returns predictions at unobserved inputs,
and an acquisition function that guides the selection of new
instances to be added to the updated training set. These two
components form the core of an iterative procedure where
(i) the ML model is fitted to the training set, (ii) the model
predictions are used to build an acquisition function, (iii) the
minimizer of the acquisition function determines the next data
point to be added to the training set, and (iv) the procedure
is repeated. In the context of QoT estimation, the first com-
ponent (i.e., the ML model) could either predict whether a
certain instance is above or below the critical system threshold
with a standard classifier, or it could predict the BER value with
a regression model and then threshold the prediction. Here, we
follow the second approach because the predicted BER value
is required to define the acquisition function in the AL phase.
The predictions are obtained with GP regression.

B. Gaussian Processes

GPs can be considered as a Bayesian implementation of
kernel methods used in both regression and classification
tasks. They are completely characterized by a mean function
m :X→R and a covariance kernel k :X×X→R, a positive
semi-definite symmetric function of two arguments; see [29].
Moreover, GPs are probabilistic models that yield a posterior
distribution over the possible values of the model, which means

that they are naturally accompanied by an assessment of their
uncertainty.

In GP regression, we observe a training set of ` points
in X, x` = {x1, . . . , x`}, coupled with ` response values
y= (y1, . . . , y`)T ∈R`, where

y i = f (xi )+ ε, (1)

and for xi ∈X, i = 1, . . . , `, with a measurement error
ε∼ N(0, σ 2

noise); we denote by f= ( f (x1), . . . , f (x`)) ∈R`
the function values. The observation model described in
Eq. (1) can be summarized as p(y|f)= N(f, σ 2

noise I`), where
I` ∈R`×` is the identity matrix. Note that for the problem
at hand, xi would be a vector of features describing the i th
lightpath in the training set, which is coupled with y i , i.e., the
BER value observed for that lightpath.

We assume that the function f is a realization of a GP; thus,
we are assuming a prior distribution for the vector f given by
p(f)= N(m, K ), where m= [m(x1), . . . ,m(x`)]T ∈R`,
and K ∈R`×` is a positive definite matrix with entries deter-
mined by the covariance kernel k, i.e., K i, j = k(xi , x j ) for
i, j = 1, . . . , `. Given the observation model and a prior
distribution, we can use the Bayes’ theorem to compute the
posterior distribution of f , given the observations, i.e.,

p(f|y)=
p(f)p(y|f)

p(y)
. (2)

In GP regression, the posterior has the remarkable property of
being normally distributed, with analytical expressions for the
posterior mean and covariance kernel ([29], Chapter 2).

The GP mean function m and kernel k are prior quantities
chosen before observing the data and thus encode our prior
knowledge. In particular, the kernel function determines the
smoothness of the GP regression fit and can be used to encode
prior knowledge on f . For example, if we expect f to be
periodic, we can choose a periodic kernel, and all prior realiza-
tions of the GP will be periodic functions. The BER function
we consider in this work, a priori, does not have any specific
property we can encode in k. For this reason, here we focus on
stationary kernels chosen from a parametric family, such as the
squared exponential or the Matérn family. Such choices encode
prior knowledge only about the smoothness of the function, as
described in the following section.

The parametric families of kernels mentioned above depend
on a few hyper-parameters θ that encode the scale of the out-
put and the characteristic length scale of each input ([29],
Chapter 4). The hyper-parameters can be learned from data by
maximizing the marginal likelihood of the model. In the GP
regression case, this function is analytical ([29], Chapter 2) and
allows for the use of fast gradient-based optimizers.

The posterior distribution of the GP [Eq. (2)] can be used
to study when the function f takes values above a certain
threshold T ∈R. A central tool for this task is the posterior
probability of excursion p`(x )= P ( f (x ) > T|y), x ∈X. This
quantity indicates the probability that f exceeds a threshold at
an input point x , and it can be used as the output probability
for a binary classifier. For each testing point x ∗, we can evaluate
p`(x ∗) and classify the point as above (respectively below)
the threshold T if p`(x ∗) > γ (respectively < γ ) for a certain
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discrimination threshold γ . In practice, the value for γ can be
chosen with different techniques: we could fix a reference value
(e.g., γ = 0.5), or an adapted value could be chosen by looking
at the ROC curve. In this setup, since the posterior distribution
of f is Gaussian, the posterior probability of excursion can be
written as

p`(x )=8
(

m`(x )− T
√

k`(x , x )

)
, (3)

where m` and k` denote, respectively, the mean and covariance
kernel of the posterior distribution of the GP. After training,
m` and k` have closed-form expressions that are fast to com-
pute for ` < 5000. The function p`(x ) will be further used
during the AL phase to explore the feature space in order to
find instances that lead to near-to-threshold BER values.

C. Active Learning with Gaussian Processes

The GP regression model introduced in the previous section
is an offline supervised training method: given a training set
(x`, y`), we build a regression model (p(f|y)), and we use it
to predict whether the response will be above or below the
threshold T by evaluating p`(x ∗) > γ . We can improve the
classification performance of this method by adding new
instances to the training set. In AL, we achieve this objective
by selecting new instances that minimize a specific acquisition
function based on the current posterior GP distribution.

In this work, we are interested in selecting instances that
improve the prediction performance of the classification func-
tion 1 f (x )>T that returns class 1 if the lightpath with features
corresponding to the vector x is above threshold T or class 0
otherwise. In the GP regression framework, for each x ∈X,
f (x ) is a random variable; therefore, 1 f (x )>T is also a random
variable with mean E`[1 f (x )>T ] = P ( f (x ) > T)= p`(x ) and
variance p`(x )(1− p`(x )). We can then envision a strategy
that improves the training set by adding instances in such a
way that the future variance of 1 f (x )>T is minimized. More
precisely, we minimize the acquisition function defined by the
integrated variance over X, i.e.,

J`(x )=E`
[∫

X
p`+1(z)(1− p`+1(z))dz|x`+1 = x

]
, (4)

where E` denotes the conditional expectation given the train-
ing data x`, y`, and we are further conditioning the next input
point to be x`+1 = x . The acquisition function in Eq. (4) was
introduced in Ref. [26]. In order to compute the integral in
Eq. (4), we need to evaluate p`+1, which is unknown since
the x`+1, y`+1 are unknown; however, Ref. [35] derived the
following closed-form formula for Eq. (4):

J`(x )=
∫
X
82

((
a(z)
−a(z)

)
,

(
c (z) 1− c (z)

1− c (z) c (z)

))
dz,

(5)

where a(z)= (m`(z)− T)/
√

k`+1(z, z), c (z)= k`(z, z)/
k`+1(z, z), and 82(·;6) is the c.d.f. of a centered bivariate
normal with covariance 6. The value k`+1(z, z) can be com-
puted analytically when evaluating J`(x ) without knowing
y`+1 (see [35,36] for more details).

Other strategies that aim at minimizing other types of
uncertainties are also possible, e.g., Refs. [26] and [35] propose
a strategy that minimizes Var(

∫
X p`+1(z)dz), and Refs. [34]

and [37] develop strategies that minimize the uncertainties on
estimates of the whole set {x ∈X : f (x ) > T}.

4. PROPOSED GP-BASED QoT ESTIMATOR

The AL procedure outlined in the previous section can be
adapted to QoT estimation. For this purpose, we need to
(i) define a feature space X where each x ∈X corresponds to a
lightpath, (ii) choose an appropriate GP regression model, and
(iii) adapt the acquisition function in Eq. (4) to our problem.

A. Feature Space

In this work, the GP regression model is trained by using
historical BER values associated with five lightpath features:
number of links traversed by the lightpath, lightpath length,
length of the longest traversed link, traffic volume, and modu-
lation format. We normalize the five input features to the
unit hypercube X= [0, 1]5, and we consider the function
fBER : x ∈X⊂R5

→R. In order to improve the fit, we trans-
form the original values of fBER with the logarithm in base 10.
This transformation is applied here purely to increase the fit-
ting power of the regression method; the analysis of the results
is computed on the back-transformed values. For this reason,
in what follows, we report only back-transformed values for
fBER and T.

B. Choice of the GP Model

We assume that fBER is a realization of a GP with a prior
constant mean function m(x ), estimated from the data, and
prior covariance kernel k = kθ (x , x ′), where we make explicit
the dependency of k on some hyper-parameters θ . Moreover,
to account for time-varying penalties affecting transmission
and for inter-channel crosstalk caused by adjacent lightpaths,
we consider the measurement y of fBER as perturbed by a
normally distributed noise, i.e., y = fBER(x )+ ε, where
ε ∼ N(0, σ 2

N).
The choice of the particular family of kernel kθ encodes

our prior assumptions on fBER. As mentioned in the previous
section we do not have strong prior information on the shape
of fBER as a function of the five-dimensional input; therefore,
we choose standard kernels that make assumptions regarding
only the regularity of the function. We consider the kernels
Matérn with smoothness parameter ν = 3/2 and 5/2 and the
squared exponential kernel. Note that ([29], Chapter 4) by
choosing a Matérn with smoothness parameter ν = q + 1/2,
q ∈N, we are assuming that our unknown function belongs to
C q , i.e., the space of functions with q continuous derivatives,
and with a square exponential that the true function belongs to
C∞, i.e., the space of differentiable functions for all degrees of
differentiation.

We fix an initial training set x`0 , y`0
of size `0 > 0. The

initial training set is used to estimate the covariance hyper-
parameters θ , by maximizing the likelihood of the GP model (a
step automatically done by most GP toolboxes). By plugging in
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the maximum likelihood estimates for θ , we can then compute
analytically the posterior mean and covariance. The purpose
of this initial step is mainly to provide a good starting point for
the active learning phase. In Section 5, we analyze numerically
the effect of varying the size `0.

The trained model provides an estimator for fBER with the
posterior GP mean and the estimator for the probability of
excursion. Given the `0 instances of the initial training set,
the excursion probability at any x ∈X can be computed with
Eq. (3) with `= `0. Given a discrimination threshold γ , we
can classify an instance x as above T if p`(x ) > γ or below
T otherwise. During the AL phase, we do not need to choose
γ , and p` will be used only within the acquisition function to
obtain new instances.

C. Active Learning

The aim of the AL phase is to expand the initial training set
with additional instances that exhibit near-to-threshold BER
values. As explained in the previous section, we select the next
training instance x`+1 by minimizing the acquisition function
in Eq. (4). The integrand in J` is the variance of the indicator
1 fBER(x )>T , and it is linked to the probability of misclassifi-
cation min(p`(x ), 1− p`(x )) [26]. In particular, here we
use the semi-analytical form for J` described in Eq. (5). Each
evaluation of J` in this formulation requires the computation
of an integral over the input space. We compute the integral
with an importance sampling Monte Carlo algorithm [36].
However, note that by using the unconstrained acquisition
function as defined in Eq. (5), the optimum might be a point
in the feature space that does not correspond to any feasible
lightpath. For this reason, we introduce a constrained version
of J`, here denoted J C

` , with hard barriers that encode the
following constraints:

x (2) ≥ x (3),

x (2) ≤ x (3) × x (1),

x (2) − x (3) ≥ (smallest link length in topology)× (x (1) − 1),

where x = (x (1), . . . , x (5))T ∈R5, with x (2) lightpath length,
x (3) length of the longest traversed link, and x (1) number of
links traversed by the lightpath. By minimizing J C

` , we find
the instance x`+1 coherent with the current network topology
that minimizes the integrated probability of misclassification at
the next step (`+ 1). The chosen training instance x`+1 is first
back transformed with a binning procedure that returns only
feasible values for the features. Then we can associate a real
lightpath on the network topology by taking the path on the
graph with the number of links, lightpath length, and longest
traversed link’s length given by the back-transformed values
of x (1)`+1, x (2)`+1, and x (3)`+1, respectively. If a lightpath with such
features does not exist on the graph, we select the lightpath
with total length and longest link length as close as possible to
x (2)`+1 and x (3)`+1 among all lightpaths with number of links equal

to x (1)`+1; in case of ties, we select randomly among the optimal
choices. We assume that this probe lightpath is deployed with

Fig. 1. Active learning framework.

traffic volume and modulation format given by the back-
transformed x (4)`+1 and x (5)`+1, respectively, and that its BER
is measured, so that we can evaluate fBER at point x`+1 and
update the GP model. Note that, since the objective function
J` is constrained to return lightpath lengths and link lengths
only within the values allowed by the considered network
topology, we can always associate a probe lightpath with a set
of features x`+1. The GP hyper-parameters θ are updated every
10 iterations of the AL procedure in order to reduce the com-
putational cost and to avoid numerical issues associated with
frequent hyper-parameter re-estimation. We continue iterating
this procedure until either a predefined budget on the number
of iterations is reached or the acquisition function value drops
below a certain tolerance. The procedure is implemented in the
R programming language with the packages DiceKriging [38]
and KrigInv [36]. Figure 1 represents the adopted AL solution
in a block diagram.

5. PERFORMANCE ASSESSMENT

We now apply the proposed AL solution for QoT estimation
over two realistic network topologies: Japan and NSF net-
works, depicted in Fig. 2 and Fig. 3, respectively [39]. We
evaluate its performance in terms of AUC. Note that our GP
model predicts the BER value; therefore, we need to compute
p` and to set a threshold on the probability of excursion to
predict whether the BER value is above the threshold T or
not. In particular, the AUC is computed by first evaluating
the probability of excursion p` on test data; then, for differ-
ent threshold levels γ , we can compute the false positive rate
(FPR) and true positive rate (TPR). By plotting the FPR versus
TPR, we obtain the ROC curve. We can then compute the
AUC by evaluating the integral of the ROC numerically. Note
that a perfect classification would result in AUC= 1, while a
completely random classifier achieves AUC= 0.5.

Fig. 2. Japan network topology.
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Fig. 3. NSF network topology.

A. Dataset Generation

To generate synthetic data, we use the QTool described in
Ref. [6]: given as input a candidate lightpath, a traffic amount
to be served, and the modulation format to be adopted for
transmission, the QTool calculates the BER as a function of the
SNR measured at the input of the channel decoder. The QTool
implements the approximated additive white GN model of
dispersion uncompensated transmission over single-mode
fibers [3], assuming a flexi-grid with 12.5 GHz slice width
and elastic transceivers operating at 28 Gbaud with optical
bandwidth of 37.5 GHz, using one modulation format among
dual polarization (DP) binary phase-shift keying (BPSK), DP
quadrature phase-shift keying (QPSK), and DP-n-quadrature
amplitude modulation (n-QAM), with n = 8, 16, 32, 64.
Traffic demands exceeding the capacity of a single transceiver
are accommodated in superchannels containing multiple
adjacent transceivers. The Qtool considers transparent links of
dispersion uncompensated standard single-mode fibers with
0.2 dB loss per km, where the signal power is restored by iden-
tical optical amplifiers equally spaced over the links (100 km),
with 20 dB gain and 5 dB noise figure. The QTool also adds
randomly distributed penalties to account for the uncertainty
of the model, according to an exponential distribution with an
average of 2 dB.

For both topologies, we fix a threshold T = 4 · 10−3 and
build the initial training sets with a fixed proportion τ ∈ [0, 1]
of instances with BER values above T. We consider three
settings:

• τ = 0, i.e., all instances have BER values below T. This
models a situation where the network has been deployed
according to conservative policies (i.e., applying consistent
design margins).

• τ = 0.05; in this case, the number of probe lightpaths
exhibiting above threshold BER already deployed in the
network is assumed to be 5% of the total number of moni-
tored lightpaths (the remaining 95% consists of established
lightpaths carrying user traffic).

• τ = 0.1; in this case, the number of already deployed
probe lightpaths is assumed to be 10% of the total amount of
monitored lightpaths.

Below, we provide the specific details of the dataset for the
two topologies.

(1) Japan topology: we generated an instance by randomly
choosing a source-destination node pair and a path

connecting them among the three shortest paths; a modu-
lation format uniformly sampled among BPSK, QPSK,
and DP-n-QAM with n = 8, 16, 32, 64; a traffic demand
uniformly selected in the range of 50–500 Gbps with
50 Gbps granularity; and evaluating the BER with the
QTool. (Note that a random selection of the modulation
format with uniform distribution captures the following
three categories of lightpaths: i) lightpaths adopting the
most spectrally efficient modulation format exhibiting
a transmission reach that exceeds the lightpath length;
ii) lightpaths adopting less aggressive modulation for-
mats, due, e.g., to more conservative design approaches;
and iii) lightpaths adopting modulation formats that are
not feasible (i.e., exhibiting transmission reaches shorter
than the lightpath length), such as probe lightpaths or
mistakenly deployed lightpaths.)

(2) NSF topology: the NSF topology has links that are signifi-
cantly longer than those of the Japan topology; therefore,
high BER values are more frequently obtained by uniform
random sampling of routes, modulation formats, and
traffic volumes, especially for configurations with high
traffic and highly efficient modulation formats. To limit
the number of instances with above-threshold BER, the
traffic demand was uniformly selected in the range of
[50–300] Gbps, and 64-QAM was excluded from the set
of modulation formats.

For both topologies, the test set was constructed by generat-
ing a separate set of E = 2000 instances, by randomly selecting
lightpaths and evaluating the BER function following the same
mechanism adopted for the generation of the training set.

B. AUC Evaluation on the Japan Topology

We consider, for all choices of τ , an initial training set of size
`0 = 100, and we repeat up to 400 AL iterations, adding one
instance at a time. We compare the AL approach to a standard
non-active (non-AL) supervised ML approach where training
is performed over a dataset of `′ = 500 samples generated
by taking the same first 100 samples as in the initial training
set of the AL and then by uniformly sampling the remaining
400 instances in such a way that the final proportion τend of
instances above T is equal to the final proportion obtained
with the AL procedure. This way, the main difference between
the final AL dataset and the randomly sampled dataset resides
exclusively in the type of points selected and not in the number
of points above the threshold that compose the training sets.
We consider three kernel functions k: a Matérn covariance with
smoothness parameter ν = 3/2 (Mat32), Matérn with ν = 5/2
(Mat52), and a squared exponential (SE) kernel ([29], Chapter
4). All models use automatic relevance determination (ARD)
kernels, which give an indication of the features’ relevance over
the output.

In Fig. 4, the AUC values obtained with AL and with ran-
dom samples are represented by the dotted curves for the
three kernel functions described above. Colors and line types
denote different kernels. AL is compared to a standard offline
ML, whose performance is averaged over 20 runs and shown
with a horizontal line (note that the shaded area represents
the 90% confidence interval). In all cases, we notice how
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Fig. 4. AUC values versus iteration number for the Japan topology. Performance of offline supervised learning reported as a horizontal line.

Table 1. Proportion of Instances (Total and with a
BER Value Above T) Required by the AL Procedure over
a Random Sampling to Achieve the Same AUC Value in
the Japan Topology (Absolute Values Reported in
Appendix A)

τ = 0.00 τ = 0.05 τ = 0.10

Total Above T Total Above T Total Above T

Mat32 6.0% 5.8% 12.8% 15.4% 23.0% 28.9%
Mat52 9.8% 11.7% 23.8% 26.5% 24.8% 27.9%
SE 9.8% 11.2% 23.2% 29.5% 27.0% 32.3%

the AL approach achieves higher values than the 90% upper
confidence interval (indicated by the crossing of the curves
with the top of the gray region) after a few iterations (less than
100). This indicates that (i) an accurate choice of the training
samples is key for the classifier predictive capabilities, and
(ii) a limited amount of selected probes can lead to satisfactory
results, while saving a large amount of training data.

To highlight the practical value of reducing the number of
probes needed to reach a certain targeted AUC, in Table 1,
column “Total,” we report the proportion of instances required
by the AL approach over the instances required by random
sampling to achieve the same AUC values. We say that AL and
random sampling achieved the same AUC when the value for
AL is equal to the 90% confidence upper bound of the random
sampling AUC. When the initial proportion of points above
T is smaller, AL requires many fewer instances than random
sampling to achieve similar AUC. For example, in the case of
τ = 0, we notice how AL requires only between 6% and 10%
of the instances needed for random sampling. This percentage
tends to increase when τ gets larger, while always remaining
below 27%. Table 1 also shows, in column “Above T,” the
proportion of the number of instances with BER above T
required by AL over the number of instances with BER above
T required by random sampling. This metric is important in
practice because BER values above T imply that transmission
along those lightpaths violates service level agreements; thus,
such lightpaths must be used exclusively for probing and can-
not carry user-generated traffic. While this quantity shows the
same behavior as the total number of instances, it is interest-
ing to note that as τ increases, the competitive advantage of
AL decreases, and, even accounting for the initial number of
instances above T, AL requires a larger proportion of instances.

This seems to indicate that the choice of the instances above T
is a key factor to achieve good performance; in fact, when many
instances above T are chosen randomly (τ = 0.1), we observe
that AL requires more instances to outdo random sampling.
This further reinforces the idea that AL is especially useful in
the early stages of the deployment of a new network, when only
a limited amount of lightpaths is installed and monitored.

Table 1 and Fig. 4 do not show large differences among the
three kernels tested for the GP method. The Matérn kernel
with ν = 3/2 shows a faster increase and achieves larger AUC
values than the other kernels; Matérn 5/2 is also slightly better
than the SE kernel. This indicates that the function fBER might
not be very smooth, with discontinuities in the second or
higher derivatives.

We evaluated the AL procedure with the AUC metric, which
is independent of the discrimination threshold chosen. In prac-
tice, however, for a given discrimination threshold, a high rate
for false positives has an important impact on network oper-
ations. The acquisition function chosen in the AL procedure
forces exploration of the feature space, thus also reducing false
positives [26]. In Appendix C, we show on one representative
example that AL reduces on average false positives faster than
random sampling as the training set size increases.

C. Impact of Initial Training Set Size in the Japan
Topology

In the previous section, the size of the initial training set was
chosen large enough to avoid any numerical issue in the opti-
mization of the hyper-parameters for any kernel. We now study
the impact of the choice of `0 (i.e., the size of the initial train-
ing set) on the results discussed above, for the Matérn kernel
with ν = 3/2.

We consider the dataset introduced in the previous section,
and we fix a prior constant mean estimated from the data.
We conduct the same experiment with `0 = 25, 50, 75, 100,
and we run the active learning procedure for 200 iterations.
We compare the results for τ = 0, 0.05, 0.1. Figure 5 shows
the AUC values as a function of the total number of evalu-
ations, i.e., the initial training set plus the AL iterations. In
the case of `0 = 100, we observe that, for all τ , the method
achieves high AUC values after a few iterations. On the other
hand, in the case of a small `0, such as `0 = 25, we see that the
starting AUC value is lower, and it takes a higher number of
iterations to achieve good AUC values. Nonetheless, `0 = 25
achieves higher or comparable AUC values to `0 = 100 after
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Fig. 5. AUC values versus iteration number, using the Mat32 kernel. Comparison of different initial designs for the Japan topology.

225 (25 initial plus 200 AL iterations or 100 initial plus 125
AL iterations) function evaluations.

The results of this experimental study suggest that the size `0

of the initial training set might not be a key parameter for the
procedure, as we observe a relatively fast convergence to high
AUC values for all choices of `0. Here, however, we consider
synthetic data, and an application of the same procedure on
real-world measurements might be subject to much higher
noise and might require larger `0 in order to achieve stable
results.

D. AUC Evaluation on the NSF Topology

For the NSF topology, we consider an initial training set of size
`0 = 100 for each choice of τ , and we repeat 500 AL iterations
adding one instance at a time to the training set. In this case,
we consider a larger number of iterations because the method
results in more unstable AUC values. Again, we compare
AL with a standard non-AL approach trained on a dataset
composed by the same initial training set of the AL method
augmented with 500 instances sampled uniformly among
all lightpaths compatible with the NSF topology. The final
proportion τend of instances with BER values above T in the
random sampling case is equal to the proportion obtained with
the AL approach. We consider the same three kernel functions
as for the Japan topology: Mat32, Mat52, and SE. Figure 6
compares the AUC values obtained with AL and non-AL.
The AUC performance of AL is plotted as a function of the
iteration number; the average AUCs obtained from 20 runs of
the non-AL approach are reported as horizontal lines, and the
90% confidence bound is identified by the shaded area.

Table 2. Proportion of Instances (Total and with a
BER Value Above T) Required by the AL Procedure over
a Random Sampling to Achieve the Same AUC Value,
When Applied to the NSF Topology (Absolute Values
Reported in Appendix A)

τ = 0.00 τ = 0.05 τ = 0.10

Total Above T Total Above T Total Above T

Mat32 44.0% 46.8% 72.8% 75.6% 93.8% 94.2%
Mat52 41.4% 43.2% 84.8% 86.8% 89.8% 91.0%
SE 59.8% 62.4% 93.8% 94.0% 83.8% 86.9%

In the case of τ = 0, we observe that AL crosses the upper
90% confidence bound after as few as 222 iterations. In this
case, more iterations than in the Japan topology are needed to
achieve performance similar to the non-AL approach. This can
be explained as, based on the output of the QTool, we observe
that BER values above T in this topology are often much
higher than T, thus making the exploration of the feature
space for values around the threshold harder. Both the AL and
the non-AL approaches then choose rather similar instances,
resulting in smaller performance gains of the AL approach
compared to the Japan topology. A reduced exploration of the
feature space around T (see also results reported in Appendix B
for test datasets restricted to instances exhibiting T> 10−5)
also makes hyper-parameter estimation harder, resulting in
AUC performances that are more unstable, as shown by the
jumps in AUC values in Fig. 6. Table 2 shows the proportion
of instances required by AL to achieve better performance than
the non-AL approach. Note that here we consider AL better
than non-AL only if the AUC value obtained by AL remains

tau=0 tau=5% tau=10%
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Fig. 6. AUC values versus iteration number achieved by the AL approach applied to the NSF topology. Performance of offline supervised learn-
ing reported as a horizontal line.
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Table 3. Average Times in Seconds (Standard
Deviation in Parenthesis) for Operations Required by
the AL Procedure in the NSF Topology

τ = 0 τ = 0.05 τ = 0.10

Train (1) 30.0 s (7.4 s) 32.0 s (10.9 s) 32.0 s (10.5 s)
Train (2) 34.8 ms (14.7 ms) 39.2 ms (22.3 ms) 33.5 ms (14.5 ms)
AL 59.8 s (38.6 s) 56.97 s (41.9 s) 57.42 s (35.8 s)
QTool 12.4 s (4.7 s) 12.9 s (5.2 s) 11.9 s (4.1 s)
Test time 0.218 ms (2.86 · 10−2 ms)

higher than non-AL for all the successive iterations. For exam-
ple, in the case of τ = 10% with Mat32 kernel (rightmost plot
in Fig. 6, red solid line), AL is considered better than non-AL
from iteration 470 and not from the first crossing at iteration
111, because of the oscillations of the AL AUC value around
the 90% confidence bound.

Similar to the results obtained for the Japan topology, also
here we notice that the performance does not vary greatly
among different kernels. The Matérn kernel with ν = 3/2
obtains slightly better performance, possibly indicating that
the function fBER is not very smooth. More importantly, it
is also more stable in the hyper-parameter estimation phase,
leading to more stable AUC performances.

As for the Japan topology, AL achieves the best performance
gains in the case of τ = 0 for all kernels, thus making a strong
argument for using AL directly in the early deployment phase
of an optical network.

Finally, Table 3 shows the average time in seconds required
for the different operations in the AL procedure for the NSF
topology. We report two GP training times: (1) includes
the hyper-parameter optimization, which is computed only
every 10 iterations, and (2) is the GP training time at fixed
hyper-parameters. The overall time required by the pro-
cedure increases from 40 s in iteration number 100 to 203 s in
iteration number 500.

According to the results reported in this section, we obtained
reductions of at least 73% in the training set size needed to
achieve satisfactory classification performance, w.r.t. a standard
offline supervised learning approach on the Japan topology.
For the NSF topology, the reduction in training set size is
more limited. However, for an initial training set created on
a network where consistent design margins are applied (case
τ = 0), we still achieve a reduction of around 65%. The differ-
ent performance in the two network topologies is linked to the
behavior of fBER around T. In the Japan topology, probably
due to the reduced length of the network links, it is possible
to explore the feature space at instances with fBER values close
to T = 4 · 10−3. In the NSF topology instead, we observe
that most of the instances with BER values above T achieve
much higher values, e.g., a random sampling of 500 instances
with 84% of the values above T has a mean BER value equal
to 0.10, much higher than T. AL also chooses most instances
with BER values much higher than T; thus, the performance
gains are reduced in this case.

6. CONCLUSION

This paper explores how AL can be used for QoT estima-
tion when the number of lightpaths available to collect BER

Table 4. Number of Instances (Total and with a BER
Value Above T) Saved by the AL Procedure Compared
to the 90% Upper Bound for a Random Sampling in the
Japan Topology

τ = 0.00 τ = 0.05 τ = 0.10

Total Above T Total Above T Total Above T

Mat32 376 259 349 236 308 197
Mat52 361 250 305 208 301 204
SE 361 253 307 189 292 193

Table 5. Number of Instances (Total and with a BER
Value Above T) Saved by the AL Procedure Compared
to the 90% Upper Bound for a Random Sampling in the
NSF Topology

τ = 0.00 τ = 0.05 τ = 0.10

Total Above T Total Above T Total Above T

Mat32 280 225 136 103 31 25
Mat52 293 239 76 56 51 39
SE 201 161 31 25 81 55

training instances is limited. Using an AL approach based on
GPs, we obtained reductions up to 75% in the training set size
needed to achieve satisfactory classification performance, w.r.t.
a standard offline supervised learning approach. These results
are extremely promising for an effective application of AL for
QoT estimation in network deployments where availability of
above-threshold probes is scarce, but the extent of the reduc-
tion on the amount of required data shall be validated in the
presence of real field data.

As future work, the use of kernels especially developed for
BER function regression could bring substantial improve-
ments, whereas more recent, safe learning objective functions
[34] could improve the stability of the results. Moreover, addi-
tional features to capture wavelength-dependent effects such
as cross-phase modulation and fluctuations in amplifier gain
profiles could be integrated in the learning model.

APPENDIX A: ADDITIONAL RESULTS

In this appendix, we report some additional results to comple-
ment Section 5.

Tables 4 and 5 report the number of instances saved by the
AL procedure with respect to a random sampling. The AUCs
compared are the AL procedure and the 90% upper bound
value obtained from 20 random sampling experiments.

APPENDIX B: NEAR-TO-TRESHOLD TEST
DATASET

Here, we also consider a restricted version of the test dataset
used in Section 5. In order to evaluate the performance of the
classifier for instances around the threshold value, we consider
a dataset where all BER values are greater than or equal to
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Table 6. Japan Topology, Best AUC Values Obtained
with AL in the Full (Test 1) and Reduced (Test 2) Test
Datasets

τ = 0.00 τ = 0.05 τ = 0.10

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

Mat32 0.9932 0.9688 0.9921 0.9692 0.9920 0.9676
Mat52 0.9929 0.9694 0.9916 0.9678 0.9917 0.9671
SE 0.9929 0.9686 0.9922 0.9695 0.9915 0.9665

Table 7. NSF Topology, Best AUC Values Obtained
with AL in the Full (Test 1) and Reduced (Test 2) Test
Datasets

τ = 0.00 τ = 0.05 τ = 0.10

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

Mat32 0.9923 0.9840 0.9928 0.9821 0.9933 0.9832
Mat52 0.9919 0.9837 0.9928 0.9866 0.9927 0.9844
SE 0.9926 0.9853 0.9918 0.9847 0.9926 0.9844

Table 8. Proportion of Instances (Total and with a
BER Value Above T) Required by AL Over a Random
Sampling to Achieve the Same AUC

a

τ = 0.00 τ = 0.05 τ = 0.10

Total Above T Total Above T Total Above T

Mat32 11.2% 12.0% 12.8% 15.4% 23.5% 29.2%
Mat52 15.0% 17.3% 23.5% 26.5% 24.8% 27.9%
SE 12.8% 14.3% 24.8% 31.7% 71.0% 74.3%

a

Japan topology, reduced test dataset.

Table 9. Proportion of Instances (Total and with a
BER Value Above T) Required by AL Over a Random
Sampling to Achieve the Same AUC Value

a

τ = 0.00 τ = 0.05 τ = 0.10

Total Above T Total Above T Total Above T

Mat32 43.6% 46.3% 49.2% 53.1% 50.4% 53.9%
Mat52 41.2% 43.2% 31.0% 35.7% 89.8% 91.0%
SE 59.8% 62.3% 81.8% 83.1% 83.8% 86.9%

a

NSF topology, reduced test dataset.

1 · 10−5. In this case, the AUC values are always smaller than
for the full test dataset considered in Section 5; see Tables 6
and 7.

Tables 8 and 9 show the proportion of instances required by
AL over a random sampling scheme. The results can be inter-
preted as explained in Section 5 for the full test dataset. Also in
this case, we see the same trends already shown in the main text
with a proportion of instances increasing as τ increases. Note
that for the restricted test data, the proportions of instances
needed by the AL approach to outdo the random sampling
approach are not very different from the proportions obtained
on the full test dataset. This indicates that the method should
perform well also in the extreme case of testing only instances
near the threshold T.
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Fig. 7. IFP values versus iteration number, using the Mat32 ker-
nel. Random sampling versus AL for the Japan topology.

APPENDIX C: STUDY ON FALSE POSITIVES

Since the occurrence of false positives from the ML QoT esti-
mator results in the deployment of an unfeasible path (a highly
undesirable situation for an operator), in this subsection, we
empirically show on one example that AL tends to reduce false
positives faster than random sampling. First of all, note that
our classification algorithm is probabilistic; therefore, com-
paring false positives would require choosing a discrimination
threshold for each iteration. Since we are comparing models
trained on different datasets, there is no unique choice for a
discrimination threshold, which makes the comparison fair.
Therefore, we consider the following quantity:

IFP : =
1

Vol({true false})

∫
{true false}

p`(x )dx ,

which takes values in [0, 1], called here integrated false pos-
itives (IFPs). In the ideal case of a perfect classification, IFP
would be zero, as the classifier would predict a positive class
with probability 0 for all negative cases, i.e., there are no false
positives for any discrimination threshold. On the other hand,
in the case of a classifier that assigns equal probabilities to both
classes, IFP would be equal to 0.5.

Figure 7 shows the integrated false positive value for each
iteration of the AL and random procedures. We consider the
Japan test case with τ = 0 and Matern kernel with ν = 3/2.
The new instances selected by the AL procedure lead to a
smaller IFP, while increasing the size of the training set with
randomly selected instances does not necessarily decrease it.
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Uciński, A. Atkinson, and C. Patan, eds. (Physica-Verlag HD, 2013),
pp. 35–43.

38. O. Roustant, D. Ginsbourger, and Y. Deville, “DiceKriging,
DiceOptim: two R packages for the analysis of computer experi-
ments by kriging-based metamodeling and optimization,” J. Stat.
Softw. 51, 1–55 (2012).

39. The code and datasets to reproduce the experiments are available
at https://bitbucket.org/darioaz/al_qot_2019/.


