53 research outputs found

    Mitochondrial bioenergetics deregulation caused by long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies in rat brain: A possible role of mPTP opening as a pathomechanism in these disorders?

    Get PDF
    AbstractLong-chain 3-hydroxylated fatty acids (LCHFA) accumulate in long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies. Affected patients usually present severe neonatal symptoms involving cardiac and hepatic functions, although long-term neurological abnormalities are also commonly observed. Since the underlying mechanisms of brain damage are practically unknown and have not been properly investigated, we studied the effects of LCHFA on important parameters of mitochondrial homeostasis in isolated mitochondria from cerebral cortex of developing rats. 3-Hydroxytetradecanoic acid (3 HTA) reduced mitochondrial membrane potential, NAD(P)H levels, Ca2+ retention capacity and ATP content, besides inducing swelling, cytochrome c release and H2O2 production in Ca2+-loaded mitochondrial preparations. We also found that cyclosporine A plus ADP, as well as ruthenium red, a Ca2+ uptake blocker, prevented these effects, suggesting the involvement of the mitochondrial permeability transition pore (mPTP) and an important role for Ca2+, respectively. 3-Hydroxydodecanoic and 3-hydroxypalmitic acids, that also accumulate in LCHAD and MTP deficiencies, similarly induced mitochondrial swelling and decreased ATP content, but to a variable degree pending on the size of their carbon chain. It is proposed that mPTP opening induced by LCHFA disrupts brain bioenergetics and may contribute at least partly to explain the neurologic dysfunction observed in patients affected by LCHAD and MTP deficiencies

    Biochemical studies on the physiopathology of MCAD, LCHAD and MTP deficiencies in human fibroblasts and rodent tissues : evidence of disruption of redox and energy homeostasis by accumulated metabolites

    Get PDF
    The medium chain acyl-CoA dehydrogenase (MCAD) deficiency is a fatty acid oxidation disorder (FAOD) biochemically characterized by accumulation of medium-chain acylcarnitines (MCAC) in tissues and biological fluids of affected individuals. The clinical presentation includes neurological symptoms as lethargy and coma, generally followed by episodes of metabolic decompensation. Other important FAOD are the mitochondrial trifunctional protein (MTPD) and the long-chain 3- hydroxyacyl-CoA dehydrogenase (LCHADD) deficiencies that are characterized by accumulation of long-chain fatty acids and their 3-hydroxylated (LCHFA) derivatives. Usually, affected patients present cardiac and hepatic dysfunction and may present signs of neurological impairment. So far, hypoglycemia and the toxicity of accumulating fatty acids have been related with the pathophysiology in these disorders, although the mechanisms responsible for tissue damage are poorly known. Thus, we investigated the effects of MCAC and LCHFA on important parameters of mitochondrial redox and energetic homeostasis in brain and heart of rats, as well as superoxide production and cell death in skin fibroblasts from patients affected by these diseases. First, we observed that MCAC induced lipid and protein oxidative damage, and reduced the antioxidant non-enzymatic defenses in rat brain, probably through induction of hydroxyl and peroxyl radicals. Furthermore, we evidenced increased superoxide levels and cell death in skin fibroblasts from MTP deficient patients under standard growing conditions indicating a chronic exposure to higher superoxide levels and a vulnerability to cell death. In addition, cells from MCADD and MTPD patients cultured under metabolic stress conditions presented increased levels of superoxide, although cell death was not increased. Finally, cell death was more pronounced in fibroblasts from MTP compared to MCAD deficient patients, and presented a strong correlation with superoxide production, suggesting that these events are probably associated. On the other hand, we observed that LCHFA provoked an impairment of heart mitochondrial energetic homeostasis, by behaving as uncouplers of oxidative phosphorylation, evidenced by increase of state 4 respiration and decrease of the respiratory control ratio, by reducing the membrane potential, the NAD(P)H content and H2O2 production. 3-Hydroxytetradecanoic acid (3 HTA) also induced mitochondrial swelling probably as a consequence of the mitochondrial permeability transition pore (mPTP) opening once cyclosporin A (CsA), a classical inhibitor, prevented this effect in heart mitochondria loaded with Ca2+. LCHFA also dissipated membrane potential, diminished NAD(P)H content and decreased ATP content in the presence or absence of Ca2+ in cerebral cortex mitochondrial preparations. Moreover, 3 HTA induced mitochondrial swelling and cytochrome c release in the presence of Ca2+, which activates apoptotic cascades. 3 HTA also affected Ca2+ homeostasis evidenced by a diminished mitochondrial Ca2+ retention capacity and induced hydrogen peroxide production in the presence of Ca2+. These alterations where prevented by ruthenium red (RR), a blocker of mitochondrial Ca2+ uptake, and by CsA plus ADP, inhibitors of the mPTP, implying its involvement in these effects. In contrast, LCHFA did not cause oxidative damage nor altered the antioxidant defenses in heart of young rats. Taken together, we demonstrated that MCAC and LCHFA found accumulated in patients affected by MCAD and MTP/LCHAD deficiencies, respectively, are potentially toxic to essential mitochondrial functions in rat brain and heart. We also found that fibroblasts from MTP deficient patients cultured under basal growing conditions are under oxidative stress that is accentuated when cultured metabolic stress conditions are used. It is presumed that these pathomechanisms may be responsible, at least in part, for the tissue damage characteristic of these patients.A deficiência da desidrogenase de acilas-CoA de cadeia média (MCAD) é um defeito da oxidação de ácidos graxos (DOAG) bioquimicamente caracterizada pelo acúmulo de acilcarnitinas de cadeia média (MCAC) em tecidos e líquidos biológicos de indivíduos afetados. Clinicamente os pacientes apresentam sintomas neurológicos como letargia e coma, geralmente desencadeados por episódios de descompensação metabólica. Outros distúrbios importantes entre os DOAG são as deficiências da proteína trifuncional mitocondrial (MTPD) e da desidrogenase de 3-hidroxiacilas-CoA de cadeia longa (LCHADD) que são caracterizadas pelo acúmulo de ácidos graxos de cadeia longa e seus derivados 3- hidroxilados (LCHFA). Geralmente, os pacientes afetados apresentam disfunção cardíaca e hepática podendo também apresentar sinais de comprometimento neurológico. Até o momento, a hipoglicemia e a toxicidade dos ácidos graxos acumulados têm sido relacionados com a fisiopatologia dessas doenças, embora os mecanismos responsáveis pelo dano tecidual não são bem conhecidos. Assim, foram investigados os efeitos dos MCAC e LCHFA sobre importantes parâmetros da função redox e homeostase energética mitocondrial em cérebro e coração de ratos, bem como a produção de superóxido e morte celular em culturas de fibroblastos da pele de pacientes afetados por essas doenças. Primeiramente, observamos que as MCAC induzem dano oxidativo lipídico e proteico, além de reduzir as defesas antioxidantes não enzimáticas em cérebro de ratos, provavelmente através da indução de radicais hidroxil e peroxil. Além disso, evidenciamos aumento dos níveis de superóxido e de morte celular em fibroblastos de pacientes afetados pela MTPD em condições padrão de cultivo indicando uma exposição crônica a níveis mais elevados de superóxido e uma vulnerabilidade à morte celular. Fibroblastos de pacientes afetados pelas MTPD e MCADD também apresentaram aumento dos níveis de superóxido quando cultivadas em condições de estresse metabólico, contudo não houve aumento de morte celular. Finalmente, a morte celular foi mais pronunciada em fibroblastos afetados pela MTPD em comparação com pacientes afetados pela MCADD, além de apresentar uma forte correlação com a produção de superóxido, sugerindo que esses eventos são provavelmente associados. Por outro lado, observamos que LCHFA prejudicam a homeostase energética em mitocôndrias de coração devido a um efeito desacoplador da fosforilação oxidativa evidenciado pelo aumento do estado 4 da respiração e diminuição da razão de controle respiratório, pela redução do potencial de membrana, do conteúdo de NAD(P)H e da produção de H2O2. O ácido 3- hidroxitetradecanóico (3 HTA) também induziu inchaço mitocondrial provavelmente como consequência da abertura do poro de transição de permeabilidade mitocondrial (mPTP) uma vez que a ciclosporina A (CsA), um inibidor clássico da abertura do poro, impediu esse efeito em mitocôndrias cardíacas carregadas com Ca2+. LCHFA também dissipadaram o potencial de membrana, diminuíram o coneúdo de NAD(P)H e de ATP na presença ou ausência de Ca2+ em mitocondriais de córtex cerebral. Além disso, na presença de Ca2+, 3 HTA induziu inchamento mitocondrial e liberação de citocromo c, que ativa rotas apoptóticas. 3 HTA também afetou a homeostase de Ca2+ evidenciado por uma reduzida capacidade de retenção de Ca2+ pela mitocôndria e induziu a produção de H2O2 na presença de Ca2+. Essas alterações foram prevenidas pelo vermelho de rutênio (RR), um bloqueador da captação mitocondrial de Ca2+, e por CsA mais ADP, inibidores da abertura do mPTP, o que implica o seu envolvimento nesses efeitos. Em contraste, LCHFA não causaram dano oxidativo nem alteraram as defesas antioxidantes em coração de ratos jovens. Em conjunto, nós demonstramos que MCAC e LCHFA que se acumulam em pacientes afetados pelas deficiências da MCAD e MTP/LCHAD, respectivamente, são potencialmente tóxicos para as funções mitocondriais essenciais em cérebro e coração de ratos. Além disso, demonstramos que fibroblastos de pacientes com MTPD cultivados em condições padrão estão sob estresse oxidativo, que é acentuado quando os fibroblastos são submetidos a condições de estresse metabólico. Presume-se que esses mecanismos fisiopatológicos podem ser responsáveis, pelo menos em parte, pelo dano tecidual característico desses pacientes

    Biochemical studies on the physiopathology of MCAD, LCHAD and MTP deficiencies in human fibroblasts and rodent tissues : evidence of disruption of redox and energy homeostasis by accumulated metabolites

    Get PDF
    The medium chain acyl-CoA dehydrogenase (MCAD) deficiency is a fatty acid oxidation disorder (FAOD) biochemically characterized by accumulation of medium-chain acylcarnitines (MCAC) in tissues and biological fluids of affected individuals. The clinical presentation includes neurological symptoms as lethargy and coma, generally followed by episodes of metabolic decompensation. Other important FAOD are the mitochondrial trifunctional protein (MTPD) and the long-chain 3- hydroxyacyl-CoA dehydrogenase (LCHADD) deficiencies that are characterized by accumulation of long-chain fatty acids and their 3-hydroxylated (LCHFA) derivatives. Usually, affected patients present cardiac and hepatic dysfunction and may present signs of neurological impairment. So far, hypoglycemia and the toxicity of accumulating fatty acids have been related with the pathophysiology in these disorders, although the mechanisms responsible for tissue damage are poorly known. Thus, we investigated the effects of MCAC and LCHFA on important parameters of mitochondrial redox and energetic homeostasis in brain and heart of rats, as well as superoxide production and cell death in skin fibroblasts from patients affected by these diseases. First, we observed that MCAC induced lipid and protein oxidative damage, and reduced the antioxidant non-enzymatic defenses in rat brain, probably through induction of hydroxyl and peroxyl radicals. Furthermore, we evidenced increased superoxide levels and cell death in skin fibroblasts from MTP deficient patients under standard growing conditions indicating a chronic exposure to higher superoxide levels and a vulnerability to cell death. In addition, cells from MCADD and MTPD patients cultured under metabolic stress conditions presented increased levels of superoxide, although cell death was not increased. Finally, cell death was more pronounced in fibroblasts from MTP compared to MCAD deficient patients, and presented a strong correlation with superoxide production, suggesting that these events are probably associated. On the other hand, we observed that LCHFA provoked an impairment of heart mitochondrial energetic homeostasis, by behaving as uncouplers of oxidative phosphorylation, evidenced by increase of state 4 respiration and decrease of the respiratory control ratio, by reducing the membrane potential, the NAD(P)H content and H2O2 production. 3-Hydroxytetradecanoic acid (3 HTA) also induced mitochondrial swelling probably as a consequence of the mitochondrial permeability transition pore (mPTP) opening once cyclosporin A (CsA), a classical inhibitor, prevented this effect in heart mitochondria loaded with Ca2+. LCHFA also dissipated membrane potential, diminished NAD(P)H content and decreased ATP content in the presence or absence of Ca2+ in cerebral cortex mitochondrial preparations. Moreover, 3 HTA induced mitochondrial swelling and cytochrome c release in the presence of Ca2+, which activates apoptotic cascades. 3 HTA also affected Ca2+ homeostasis evidenced by a diminished mitochondrial Ca2+ retention capacity and induced hydrogen peroxide production in the presence of Ca2+. These alterations where prevented by ruthenium red (RR), a blocker of mitochondrial Ca2+ uptake, and by CsA plus ADP, inhibitors of the mPTP, implying its involvement in these effects. In contrast, LCHFA did not cause oxidative damage nor altered the antioxidant defenses in heart of young rats. Taken together, we demonstrated that MCAC and LCHFA found accumulated in patients affected by MCAD and MTP/LCHAD deficiencies, respectively, are potentially toxic to essential mitochondrial functions in rat brain and heart. We also found that fibroblasts from MTP deficient patients cultured under basal growing conditions are under oxidative stress that is accentuated when cultured metabolic stress conditions are used. It is presumed that these pathomechanisms may be responsible, at least in part, for the tissue damage characteristic of these patients.A deficiência da desidrogenase de acilas-CoA de cadeia média (MCAD) é um defeito da oxidação de ácidos graxos (DOAG) bioquimicamente caracterizada pelo acúmulo de acilcarnitinas de cadeia média (MCAC) em tecidos e líquidos biológicos de indivíduos afetados. Clinicamente os pacientes apresentam sintomas neurológicos como letargia e coma, geralmente desencadeados por episódios de descompensação metabólica. Outros distúrbios importantes entre os DOAG são as deficiências da proteína trifuncional mitocondrial (MTPD) e da desidrogenase de 3-hidroxiacilas-CoA de cadeia longa (LCHADD) que são caracterizadas pelo acúmulo de ácidos graxos de cadeia longa e seus derivados 3- hidroxilados (LCHFA). Geralmente, os pacientes afetados apresentam disfunção cardíaca e hepática podendo também apresentar sinais de comprometimento neurológico. Até o momento, a hipoglicemia e a toxicidade dos ácidos graxos acumulados têm sido relacionados com a fisiopatologia dessas doenças, embora os mecanismos responsáveis pelo dano tecidual não são bem conhecidos. Assim, foram investigados os efeitos dos MCAC e LCHFA sobre importantes parâmetros da função redox e homeostase energética mitocondrial em cérebro e coração de ratos, bem como a produção de superóxido e morte celular em culturas de fibroblastos da pele de pacientes afetados por essas doenças. Primeiramente, observamos que as MCAC induzem dano oxidativo lipídico e proteico, além de reduzir as defesas antioxidantes não enzimáticas em cérebro de ratos, provavelmente através da indução de radicais hidroxil e peroxil. Além disso, evidenciamos aumento dos níveis de superóxido e de morte celular em fibroblastos de pacientes afetados pela MTPD em condições padrão de cultivo indicando uma exposição crônica a níveis mais elevados de superóxido e uma vulnerabilidade à morte celular. Fibroblastos de pacientes afetados pelas MTPD e MCADD também apresentaram aumento dos níveis de superóxido quando cultivadas em condições de estresse metabólico, contudo não houve aumento de morte celular. Finalmente, a morte celular foi mais pronunciada em fibroblastos afetados pela MTPD em comparação com pacientes afetados pela MCADD, além de apresentar uma forte correlação com a produção de superóxido, sugerindo que esses eventos são provavelmente associados. Por outro lado, observamos que LCHFA prejudicam a homeostase energética em mitocôndrias de coração devido a um efeito desacoplador da fosforilação oxidativa evidenciado pelo aumento do estado 4 da respiração e diminuição da razão de controle respiratório, pela redução do potencial de membrana, do conteúdo de NAD(P)H e da produção de H2O2. O ácido 3- hidroxitetradecanóico (3 HTA) também induziu inchaço mitocondrial provavelmente como consequência da abertura do poro de transição de permeabilidade mitocondrial (mPTP) uma vez que a ciclosporina A (CsA), um inibidor clássico da abertura do poro, impediu esse efeito em mitocôndrias cardíacas carregadas com Ca2+. LCHFA também dissipadaram o potencial de membrana, diminuíram o coneúdo de NAD(P)H e de ATP na presença ou ausência de Ca2+ em mitocondriais de córtex cerebral. Além disso, na presença de Ca2+, 3 HTA induziu inchamento mitocondrial e liberação de citocromo c, que ativa rotas apoptóticas. 3 HTA também afetou a homeostase de Ca2+ evidenciado por uma reduzida capacidade de retenção de Ca2+ pela mitocôndria e induziu a produção de H2O2 na presença de Ca2+. Essas alterações foram prevenidas pelo vermelho de rutênio (RR), um bloqueador da captação mitocondrial de Ca2+, e por CsA mais ADP, inibidores da abertura do mPTP, o que implica o seu envolvimento nesses efeitos. Em contraste, LCHFA não causaram dano oxidativo nem alteraram as defesas antioxidantes em coração de ratos jovens. Em conjunto, nós demonstramos que MCAC e LCHFA que se acumulam em pacientes afetados pelas deficiências da MCAD e MTP/LCHAD, respectivamente, são potencialmente tóxicos para as funções mitocondriais essenciais em cérebro e coração de ratos. Além disso, demonstramos que fibroblastos de pacientes com MTPD cultivados em condições padrão estão sob estresse oxidativo, que é acentuado quando os fibroblastos são submetidos a condições de estresse metabólico. Presume-se que esses mecanismos fisiopatológicos podem ser responsáveis, pelo menos em parte, pelo dano tecidual característico desses pacientes

    Investigação dos efeitos de ácidos graxos de cadeia longa hidroxilada acumulados nas deficiências da desidrogenase de hidroxiacil-coa de cadeia longa e da proteína trifuncional mitocondrial sobre parâmetros de estresse oxidativo e homeostase mitocondrial em cérebro de ratos jovens

    Get PDF
    As deficiências da proteína trifuncional mitocondrial (MTP) e da desidrogenase de acil-CoA de cadeia longa hidroxilada (LCHAD) são defeitos hereditários da β-oxidação de ácidos graxos. Pacientes afetados por essas deficiências apresentam acúmulo de 3-hidroxiácidos de cadeia longa, como os ácidos 3-hidroxidodecanóico (3HDA), 3-hidroxitetradecanóico (3HTA) e 3-hidroxipalmítico (3HPA) em tecidos e líquidos biológicos. A apresentação clínica é caracterizada por encefalopatia com coma, letargia, convulsão, retardo mental e hipotonia, além de disfunção hepática, cardiomiopatia, fraqueza muscular e retinopatia. Considerando que a fisiopatologia dos sintomas neurológicos dessas doenças ainda não está bem estabelecida e que tem sido levantada a hipótese de que os ácidos graxos acumulados nessas doenças possam exercer efeitos tóxicos, o presente trabalho se propôs a investigar os efeitos in vitro dos ácidos 3HDA, 3HTA e 3HPA sobre parâmetros de estresse oxidativo e da homeostase mitocondrial em cérebro de ratos de 30 dias de vida. Inicialmente, observamos que o 3HDA, 3HTA e 3HPA induziram um aumento na peroxidação lipídica evidenciado por um aumento nos níveis de substâncias reativas ao ácido tiobarbitúrico (TBA-RS). Os ácidos 3HTA e 3HPA também causaram dano oxidativo proteico, visto que aumentaram o conteúdo de carbonilas e diminuíram o conteúdo de grupamentos sulfidrila. Além disso, 3HTA e 3HPA diminuíram os níveis de glutationa reduzida (GSH), o principal antioxidante não-enzimático presente no cérebro, sem no entanto, alterar a produção de nitratos e nitritos. O ácido 3HTA apresentou o efeito mais pronunciado nos parâmetros testados e a adição dos antioxidantes e sequestradores de radicais livres trolox e deferoxamina (DFO) foram capazes de prevenir parcialmente o dano oxidativo lipídico, ao passo que DFO preveniu totalmente a redução dos níveis de GSH. Além disso, os ácidos 3HDA, 3HTA e 3HPA aumentaram o estado 4 da respiração mitocondrial e diminuíram os valores do índice de controle respiratório. 3HTA e 3HPA também diminuíram o potencial de membrana e o conteúdo de equivalentes reduzidos de NAD(P)H na matriz mitocondrial, sugerindo um efeito desacoplador da fosforilação oxidativa. Além disso, o 3HTA diminuiu o estado 3 da respiração e a razão ADP/O quando utilizado glutamato/malato como substrato, mas não quando utilizado piruvato/malato ou sucinato como substratos, sugerindo que o transporte de glutamato e/ou sua oxidação possam estar sendo inibidos pela presença deste ácido. Nossos resultados sugerem que os ácidos graxos acumulados na deficiências da LCHAD e MTP induzem estresse oxidativo e comprometem a homeostase mitocondrial, mecanismos que potencialmente podem estar envolvidos no dano neurológico apresentado pelos pacientes afetados por essas deficiências.Mitochondrial trifunctional protein (MTP) and isolated long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies are inborn errors of metabolism of fatty acid oxidation. Affected patients present blood and tissue accumulation of the 3-hydroxy fatty acids, such as 3-hydroxydodecanoic (3HDA), 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids. Clinical presentation is characterized by a encephalopathic crises with coma, lethargy, seizures, mental retardation and hypotonia, besides hepatic disfunction, cardiomiopathy and muscle weakness and retinopathy. Considering that the pathophisiology of the neurological damage found in LCHAD/MTP-deficient patients is not yet clear, and it has been proposed that accumulating fatty acids could present toxic effects, the aim of the present work was to investigate the in vitro effects of 3HDA, 3HTA and 3HPA on oxidative stress parameters and on mitochondrial homeostasis in 30-day-old rat brain. It was first verified that 3HDA, 3HTA and 3HPA significantly induced lipid peroxidation, as determined by increased thiobarbituric acid-reactive substances levels. In addition, carbonyl formation was significantly increased by 3HTA and 3HPA, whereas sulfhydryl content was decreased, which indicates that these fatty acids elicit protein oxidative damage. 3HTA and 3HPA also diminished the reduced glutathione (GSH) levels, the main brain non-enzymatic antioxidant defense, without affecting nitrate and nitrite production. Finally, we observed that 3HTA elicited the most pronounced effects on the tested parameters and the addition of antioxidants and free radical scavengers trolox and deferoxamine (DFO) were able to partially prevent lipid oxidative damage, whereas DFO fully prevented the reduction on GSH levels induced by this fatty acid. We also found that 3HDA, 3HTA and 3HPA markedly increased state 4 respiration and diminished the respiratory control ratio. 3HTA and 3HPA also diminished the mitochondrial membrane potential and the matrix NAD(P)H levels, suggesting an uncoupler effect of oxidative fosforilation . In addition, 3HTA decreased state 3 of respiration and ADP/O ratio, when used glutamate/malate as substrates, but not when piruvate/malate or succinate were used as substrates, suggesting that glutamate transport and/or oxidation could be inhibited by this fatty acid. Taken together, these results suggest that the fatty acids accumulating in LCHAD/MTP induce oxidative stress and impair mitochondrial homeostasis, mechanisms that potentially may be involved on the neurological damage found in affected patientes

    Investigação dos efeitos de ácidos graxos de cadeia longa hidroxilada acumulados nas deficiências da desidrogenase de hidroxiacil-coa de cadeia longa e da proteína trifuncional mitocondrial sobre parâmetros de estresse oxidativo e homeostase mitocondrial em cérebro de ratos jovens

    Get PDF
    As deficiências da proteína trifuncional mitocondrial (MTP) e da desidrogenase de acil-CoA de cadeia longa hidroxilada (LCHAD) são defeitos hereditários da β-oxidação de ácidos graxos. Pacientes afetados por essas deficiências apresentam acúmulo de 3-hidroxiácidos de cadeia longa, como os ácidos 3-hidroxidodecanóico (3HDA), 3-hidroxitetradecanóico (3HTA) e 3-hidroxipalmítico (3HPA) em tecidos e líquidos biológicos. A apresentação clínica é caracterizada por encefalopatia com coma, letargia, convulsão, retardo mental e hipotonia, além de disfunção hepática, cardiomiopatia, fraqueza muscular e retinopatia. Considerando que a fisiopatologia dos sintomas neurológicos dessas doenças ainda não está bem estabelecida e que tem sido levantada a hipótese de que os ácidos graxos acumulados nessas doenças possam exercer efeitos tóxicos, o presente trabalho se propôs a investigar os efeitos in vitro dos ácidos 3HDA, 3HTA e 3HPA sobre parâmetros de estresse oxidativo e da homeostase mitocondrial em cérebro de ratos de 30 dias de vida. Inicialmente, observamos que o 3HDA, 3HTA e 3HPA induziram um aumento na peroxidação lipídica evidenciado por um aumento nos níveis de substâncias reativas ao ácido tiobarbitúrico (TBA-RS). Os ácidos 3HTA e 3HPA também causaram dano oxidativo proteico, visto que aumentaram o conteúdo de carbonilas e diminuíram o conteúdo de grupamentos sulfidrila. Além disso, 3HTA e 3HPA diminuíram os níveis de glutationa reduzida (GSH), o principal antioxidante não-enzimático presente no cérebro, sem no entanto, alterar a produção de nitratos e nitritos. O ácido 3HTA apresentou o efeito mais pronunciado nos parâmetros testados e a adição dos antioxidantes e sequestradores de radicais livres trolox e deferoxamina (DFO) foram capazes de prevenir parcialmente o dano oxidativo lipídico, ao passo que DFO preveniu totalmente a redução dos níveis de GSH. Além disso, os ácidos 3HDA, 3HTA e 3HPA aumentaram o estado 4 da respiração mitocondrial e diminuíram os valores do índice de controle respiratório. 3HTA e 3HPA também diminuíram o potencial de membrana e o conteúdo de equivalentes reduzidos de NAD(P)H na matriz mitocondrial, sugerindo um efeito desacoplador da fosforilação oxidativa. Além disso, o 3HTA diminuiu o estado 3 da respiração e a razão ADP/O quando utilizado glutamato/malato como substrato, mas não quando utilizado piruvato/malato ou sucinato como substratos, sugerindo que o transporte de glutamato e/ou sua oxidação possam estar sendo inibidos pela presença deste ácido. Nossos resultados sugerem que os ácidos graxos acumulados na deficiências da LCHAD e MTP induzem estresse oxidativo e comprometem a homeostase mitocondrial, mecanismos que potencialmente podem estar envolvidos no dano neurológico apresentado pelos pacientes afetados por essas deficiências.Mitochondrial trifunctional protein (MTP) and isolated long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies are inborn errors of metabolism of fatty acid oxidation. Affected patients present blood and tissue accumulation of the 3-hydroxy fatty acids, such as 3-hydroxydodecanoic (3HDA), 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids. Clinical presentation is characterized by a encephalopathic crises with coma, lethargy, seizures, mental retardation and hypotonia, besides hepatic disfunction, cardiomiopathy and muscle weakness and retinopathy. Considering that the pathophisiology of the neurological damage found in LCHAD/MTP-deficient patients is not yet clear, and it has been proposed that accumulating fatty acids could present toxic effects, the aim of the present work was to investigate the in vitro effects of 3HDA, 3HTA and 3HPA on oxidative stress parameters and on mitochondrial homeostasis in 30-day-old rat brain. It was first verified that 3HDA, 3HTA and 3HPA significantly induced lipid peroxidation, as determined by increased thiobarbituric acid-reactive substances levels. In addition, carbonyl formation was significantly increased by 3HTA and 3HPA, whereas sulfhydryl content was decreased, which indicates that these fatty acids elicit protein oxidative damage. 3HTA and 3HPA also diminished the reduced glutathione (GSH) levels, the main brain non-enzymatic antioxidant defense, without affecting nitrate and nitrite production. Finally, we observed that 3HTA elicited the most pronounced effects on the tested parameters and the addition of antioxidants and free radical scavengers trolox and deferoxamine (DFO) were able to partially prevent lipid oxidative damage, whereas DFO fully prevented the reduction on GSH levels induced by this fatty acid. We also found that 3HDA, 3HTA and 3HPA markedly increased state 4 respiration and diminished the respiratory control ratio. 3HTA and 3HPA also diminished the mitochondrial membrane potential and the matrix NAD(P)H levels, suggesting an uncoupler effect of oxidative fosforilation . In addition, 3HTA decreased state 3 of respiration and ADP/O ratio, when used glutamate/malate as substrates, but not when piruvate/malate or succinate were used as substrates, suggesting that glutamate transport and/or oxidation could be inhibited by this fatty acid. Taken together, these results suggest that the fatty acids accumulating in LCHAD/MTP induce oxidative stress and impair mitochondrial homeostasis, mechanisms that potentially may be involved on the neurological damage found in affected patientes
    corecore