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Long-chain 3-hydroxylated fatty acids (LCHFA) accumulate in long-chain 3-hydroxy-acyl-CoA dehydrogenase
(LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies. Affected patients usually present severe
neonatal symptoms involving cardiac and hepatic functions, although long-term neurological abnormalities
are also commonly observed. Since the underlying mechanisms of brain damage are practically unknown and
have not been properly investigated, we studied the effects of LCHFA on important parameters of mitochondrial
homeostasis in isolated mitochondria from cerebral cortex of developing rats. 3-Hydroxytetradecanoic acid
(3 HTA) reduced mitochondrial membrane potential, NAD(P)H levels, Ca2+ retention capacity and ATP
content, besides inducing swelling, cytochrome c release and H2O2 production in Ca2+-loaded mitochondrial
preparations. We also found that cyclosporine A plus ADP, as well as ruthenium red, a Ca2+ uptake blocker,
prevented these effects, suggesting the involvement of the mitochondrial permeability transition pore (mPTP)
and an important role for Ca2+, respectively. 3-Hydroxydodecanoic and 3-hydroxypalmitic acids, that also
accumulate in LCHAD and MTP deficiencies, similarly induced mitochondrial swelling and decreased ATP
content, but to a variable degree pending on the size of their carbon chain. It is proposed that mPTP opening
induced by LCHFA disrupts brain bioenergetics and may contribute at least partly to explain the neurologic
dysfunction observed in patients affected by LCHAD and MTP deficiencies.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) is part of
the mitochondrial trifunctional protein (MTP) complex that also com-
prises other two enzyme activities, long-chain enoyl-CoA hydratase
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and long-chain ketoacyl-CoA thiolase (LCKT). This complex is responsible
for mitochondrial oxidation of long-chain fatty acids (LCFA) and an
impairment of this pathway, mainly during fasting and prolonged
exercise, leads to accumulation of toxic fatty acids, reduction of energy
production, decreased acetyl-CoA availability and hypoketosis [1–3].
Mutations in the genes that encode the MTP complex can lead to
reduction or absent activity of all MTP complex enzymes or isolated
LCHAD and LCKT deficiencies, being LCHAD deficiency the most
frequent disorder [1,3,4].

LCHAD and MTP deficiencies are recognized as severe and life-
threatening diseases what makes an early identification and
treatment essential to improve patient survival. Both disorders
are undistinguishable clinically and biochemically, presenting
with a multiorgan involvement and elevated levels of LCFA and
their hydroxylated derivatives (LCHFA) in tissues and biological
fluids.

Severe neonatal cardiomyopathy, hepatic dysfunction and skeletal
myopathy with rhabdomyolysis are frequently seen in patients with
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LCHAD and MTP deficiencies. Furthermore, affected patients can also
present later in life irreversible peripheral neuropathy and retinopathy
[5], as well as speech and developmental delay, hypotonia, and lethargy
that indicate cerebral dysfunction [6,7]. Since hypoglycemia is
commonly found in these individuals, poor glucose uptake could
possibly underlie these neurologic symptoms. However, we cannot
rule out that the long-term neurologic symptomatology may be
associated with the toxicity of LCHFA or their 3-hydroxy-long-
chain acylcarnitines that accumulate in these disorders [5,8–10].
Although the exact pathomechanisms underlying the toxic effects
of the LCHFA are poorly understood, recent studies demonstrated
induction of oxidative stress in skin fibroblasts from MTP deficient
patients [11]. It has been also demonstrated that LCHFA induce
lipid and protein oxidative damage and decrease the antioxidant
defenses in rat cerebral cortex in vitro [12]. Impairment of mitochondrial
respiration and decrease of reduced equivalents caused by LCHFA,
probably secondary to uncoupling of oxidative phosphorylation,
were also shown in forebrain and heart of adolescent rats [13,14].
These data provide evidence that LCHFA disturb energy and redox
mitochondrial homeostasis in the brain and are in line with the
observations that muscle biopsies from LCHAD deficient patients
showed abnormal mitochondrial morphology with swollen appear-
ance containing fat infiltration [15]. However, more work is necessary
to ascertain in more details the exact role of LCHFA on brain
bioenergetics.

In this context, it has been long believed that under physiological
conditions there is only a minor utilization of long-chain fatty acids
(LCFA) in adult brain for energy metabolism because these
compounds do not penetrate into brain and cannot be oxidized to
generate ATP. However, some studies indicate that normal brain
functioning depends on these fatty acids that are obtained from
the blood at all ages but particularly in developing mammals.
Indeed, fatty acids, and especially essential fatty acids, are continu-
ally required by developing and adult mammalian brain, where
they can be oxidized to CO2, elongated, incorporated into complex
lipids, or follow other routes [16–20]. On the other hand, although
it has been proposed that LCFA would not be expected to pass
through the blood brain barrier (BBB) because they bind tightly to
plasma protein and they are almost completely ionized at pH 7.4,
some works found that they dissociate very easily from albumin
[21] and that saturated and unsatured LCFA are rapidly transported
through the BBB either by passive diffusion using a ‘flip–flop’mechanism
or by a protein-mediated transport mechanism using specific transport
proteins (FATP) [22–25]. Furthermore, chronic dietary ingestion of a
high content of saturated fatty acids and unsaturated fatty acids
provokes oxidative damage in endothelial cells leading to BBB damage
and dysfunction that could increase membrane permeability [26,27].
Finally, fatty acid binding proteins and carnitine have been found in
the brain tissue, supporting a role for fatty acid metabolism in
neurodevelopment [24,28].

Thus, in the present work we investigated the role of 3-
hydroxydodecanoic (3 HDA), 3-hydroxytetradecanoic (3 HTA) and 3-
hydroxypalmitic (3HPA) acids on important parameters ofmitochondrial
homeostasis, such as membrane potential, swelling, Ca2+ retention
capacity, NAD(P)H content, H2O2 production, cytochrome c release and
ATP content in Ca2+-loaded mitochondrial preparations from cerebral
cortex from adolescent rats.

2. Material and methods

2.1. Reagents

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Stock solutions of a racemic mixture (DL) of 3 HDA, 3 HTA and 3
HPA were prepared in ethanol (EtOH, 1% final concentration in the
incubation medium) and added to incubation medium at final
concentrations of 10, 30 and 60 μM. The same percentage of EtOH
(1%) was present in controls and proved not to alter the parameters
evaluated.
2.2. Animals

Thirty-day-old Wistar rats obtained from our breeding colony were
used. The animals were maintained on a 12:12 h light/dark cycle in an
air conditioned constant temperature (22 ± 1 °C) colony room, with
free access to water and 20% (w/w) protein commercial chow. The
experimental protocol was approved by the Ethics Committee for
animal research of the Universidade Federal do Rio Grande do Sul,
Porto Alegre, Brazil and followed the Principles of Laboratory Animal
Care (NIH publication 85-23, revised 1996).
2.3. Preparation of mitochondrial fractions

Mitochondrial preparations from cerebral cortex were isolated
according to Rosenthal and co-workers [29], with slight modifica-
tions [30]. Animals were decapitated; the cerebral cortex was dis-
sected and homogenized with a glass hand-held homogenizer in
ice-cold mitochondria isolation buffer containing 225 mM mannitol,
75 mM sucrose, 1 mM EGTA, 0.1% bovine serum albumin (BSA, free
fatty acid) and 10 mM HEPES, pH 7.2. The homogenate was centri-
fuged at 2000 ×g for 3 min at 4 °C. The pellet was discarded and
the supernatant was centrifuged at 12,000 ×g for 8 min at 4 °C. The
resultant pellet was resuspended in 5 mL of isolation buffer contain-
ing 20 μL of 10% digitonin (final concentration of 0.04%), and centri-
fuged at 12,000 ×g for 10 min at 4 °C. The supernatant was discarded
and the pellet resuspended in 5 mL of isolation buffer without EGTA
and centrifuged at 12,000 ×g for 10 min at 4 °C. The final pellet was
resuspended in isolation buffer without EGTA in an approximate
protein concentration of 15–20 mg·mL−1. Protein concentration was
measured by the method of Bradford [31] using BSA as standard.
This preparation results in a mixture of synaptosomal and non-
synaptosomal mitochondria similar to the general brain composi-
tion. Mitochondria obtained from cerebral cortex were used in the
assays immediately after isolation and assays were carried out in
the absence or presence of Ca2+.
2.4. Standard experimental procedure

Mitochondrial incubations were carried out at 37 °C, with continuous
magnetic stirring. All spectrofluorimetric assayswere conducted in theme-
dium containing 150 mM KCl, 5 mM MgCl2, 30 μM EGTA, 0.1 mg·mL−1

BSA, 5 mM HEPES, 2 mM KH2PO4, and pH 7.2, using mitochondria
(0.5 mg protein·mL−1) supported by 2.5 mM glutamate plus 2.5 mM
malate. 3 HDA (10–30 μM), 3 HTA (10–60 μM), 3 HPA (10–30 μM),
CaCl2 (0–30 μM), CCCP (3 μM), antimycin A (AA, 0.1 μg·mL−1) and
alamethicin (Alm, 40 μg·mL−1) were added as indicated by the arrows
in the figures. In some experiments, ruthenium red (RR, 1 μM),
cyclosporin A (CsA, 1 μM), ADP (300 μM) and 1 μg·mL−1 oligomycin
A were added in the assay. Traces are representative of independent
experiments carried out in mitochondrial preparations from cerebral
cortex of three animals and were expressed as fluorescence arbitrary
units (FAU), unless otherwise stated. Statistical analyses were also
carried out by analyzing quantitatively the data obtained from the
assays. Various blanks were used. Some blanks did not contain the
LCHFA and served as controls, whereas others were devoid of brain
mitochondrial preparations in the incubation medium and served
to detect interferences (artifacts) of the tested metabolites on the
techniques utilized to measure the mitochondrial parameters (results
not shown).
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2.5. Mitochondrial membrane potential

Mitochondrial membrane potential (ΔΨm) was estimated accord-
ing to Akerman and Wikstrom [32] and Kowaltowski et al. [33]. The
fluorescence of 5 μM cationic dye safranin O, a ΔΨm indicator, was
followed at excitation and emission wavelengths of 495 and 586 nm.
CCCP was added at the end of the measurements to abolish ΔΨm.

2.6. Mitochondrial swelling

Mitochondrial swelling was assayed following the decrease of light
scattering at excitation and emission of 540 nm. A decrease in fluores-
cence indicates an increase in mitochondrial swelling. Alamethicin
(Alm) was added at the end of the experiment to provoke maximal
swelling.

2.7. Mitochondrial Ca2+ retention capacity

Ca2+ retention capacity was determined following the external free
Ca2+ levels using 0.2 μM Calcium Green-5 N (Molecular Probes,
Invitrogen, Carlsbad, CA) at excitation and emission wavelengths of
506 and 532 nm, respectively. A low concentration of ADP (30 μM)
was present in the incubationmedium to achievemore consistentmito-
chondrial Ca2+ uptake responses [34]. At the end of the measurements,
maximal Ca2+ release was induced by CCCP.

2.8. Mitochondrial NAD(P)H

Mitochondrial matrix NAD(P)H autofluorescence was measured at
366 nm excitation and 450 nm emission wavelengths. CCCP was
added at the end of the measurements to induce maximal NAD(P)H
oxidation.

2.9. Mitochondrial hydrogen peroxide (H2O2) release

H2O2 production was assessed through the oxidation of Ampliflu
red (5 μM) in the presence of horseradish peroxidase (0.5 U/mL)
[35]. The increase in fluorescence was monitored over time at excita-
tion and emission wavelengths of 563 and 587 nm, respectively.
Antimycin A, a respiratory chain inhibitor, was added at the end of
the experiments to provoke maximal H2O2 production. The quantifi-
cation of the rates of H2O2 emission in pmol/min/mg protein was
performed by creating a slope coefficient with addition of known
amounts of H2O2.

2.10. Cytochrome c immunocontent

The swelling experiments were also carried out in the absence of
Alm. The incubation mediumwas collected afterwards, and centrifuged
at 12,000 ×g for 10 min at 4 °C in order to sediment mitochondria. The
resultant pellet was resuspended in 1×RIPA buffer and centrifuged at
10,000 ×g for 5 min at 4 °C. The samples were then diluted with
Laemmli-sample buffer (62.5 mM Tris–HCl, pH 6.8, 1% (w/v) SDS, 10%
(v/v) glycerol) and 30 μg of protein/well were fractionated by SDS-PAGE
and electro-blotted onto nitrocellulose membranes with Trans-Blot®
SD Semi-Dry Electrophoretic Transfer Cell, Bio-Rad (Hercules, CA,
USA). Protein loading and electro-blotting efficiency were verified
through Ponceau S staining. The membranes were washed with
Tween–Tris buffered saline (Tris 100 mM, pH 7.5, 0.9% NaCl and 0.1%
Tween-20) and incubated for 20 min at room temperature in SNAP
i.d.® 2.0 Protein Detection System Merck Millipore (Billerica, MA,
USA) with the mouse monoclonal anti-cytochrome c primary antibody
(Abcam, Massachusetts, USA) (1:500 dilution range). They were then
washed with TTBS. Anti-mouse IgG peroxidase-linked secondary
antibody was incubated with the membranes for an additional 20 min
in SNAP (1:5000 dilution range), and washed again and the
immunoreactivity was detected by enhanced chemiluminescence
using the Supersignal West Pico Chemiluminescent kit from Thermo
Scientific (Luminol/Enhancer and Stable Peroxide Buffer). Densitomet-
ric analysis of the films was performed with Image J. software. Blots
were developed to be linear in the range used for densitometry. All
data were related to total protein.

2.11. ATP production

Mitochondrial fractions (0.75 mg protein·mL−1) were incubated
in respiring medium containing 0.3 M sucrose, 5 mM MOPS, 5 mM
KH2PO4, 30 μM EGTA, 0.1% BSA, and pH 7.4, using 2.5 mM malate
plus 2.5 mM glutamate as substrates in a final volume of 500 μL.
The reaction was started by the addition of 1 mM ADP and stopped
after 2 min with 1 μg·mL−1 oligomycin A. The mitochondrial
suspension was then treated with 10 μL of ice-cold 6 M HClO4.
After centrifugation at 21,000 ×g for 5 min at 4 °C, 400 μL aliquots
of the supernatant were neutralized with 100 μL of 1 M K2HPO4

and submitted to a new centrifugation at 21,000 ×g for 5 min at
4 °C. ATP was determined in the resulting supernatant by the firefly
luciferin–luciferase assay system according to the manufacturer's in-
structions [36,37]. The luminescence was measured in a Spectramax
M5 microplate spectrofluorimeter. In some experiments oligomycin
A was used as a control.

2.12. Statistical analysis

Results are presented as mean± standard deviation. Assays were
performed in triplicate and the mean was used for statistical
analysis. Data were analyzed using one-way analysis of variance
(ANOVA) followed by the post-hoc Tukey's multiple comparison
test when F was significant. Differences between groups were rated
significant at P b 0.05. All analyses were carried out using the GraphPad
software.

3. Results

3.1. 3 HTA dissipates mitochondrial membrane potential (ΔΨm)

We first observed that 3 HTA significantly decreases ΔΨm in a
dose dependent manner and that this effect is enhanced when
mitochondrion was challenged by Ca2+ (Fig. 1A). Furthermore, 3
HTA-induced mitochondrial depolarization was prevented by RR,
that blocks Ca2+ entrance into the mitochondria, and by CsA plus
ADP, classical inhibitors of mPTP (Fig. 1B). Fig. 1C shows that 3 HPA
similarly decreased ΔΨm after Ca2+ addition, that was prevented
by CsA plus ADP. These data indicate that 3 HTA and 3 HPA elicit
mPTP and that this effect is dependent on the presence of Ca2+ in
the mitochondrial preparations.

3.2. LCHFA provoke mitochondrial swelling

Then, we investigated the influence of the LCFA on mitochondrial
swelling. We verified that these fatty acids induced a significant but
differential swelling in Ca2+-loaded mitochondria pending on their
chain length (Fig. 2A–D). So, mitochondrial swelling was increased 6-fold
by 3 HPA (Fig. 2B), 3.5-fold by 3 HTA (Fig. 2A) and 2-fold by 3 HDA
(Fig. 2C). Furthermore, the effects provoked by 3 HTA was avoided by
RR and by CsA plus ADP, implying a role for Ca2+, aswell as the involve-
ment of mPTP opening, in 3 HTA-induced mitochondrial swelling
(Fig. 3).

3.3. Mitochondrial Ca2+ retention capacity is reduced by 3 HTA

We evaluated the effects of 3 HTA on mitochondrial Ca2+ retention
capacity, since one of the critical functions of the mitochondria is to



Fig. 1. In vitro effects of 3-hydroxytetradecanoic acid (3 HTA) and 3-hydroxypalmitic acid (3 HPA) on mitochondrial membrane potential in the presence of Ca2+. (A) 3 HTA (10–30 μM,
lines b–c) was added 50 s after the beginning of the assay to the reaction media containing the mitochondrial preparations (Mit, 0.5 mg protein·mL−1 supported by glutamate/malate)
and followedby addition of 15 μMCa2+ 100 s later, as indicated. (B) 30 μM3HTA (lines b–d)was added50 s after the beginning of the assay to the reactionmedia and followedby addition
of 15 μMCa2+ 100 s later, as indicated. Cyclosporin A (CsA, 1 μM) plus ADP (300 μM) (line c) or ruthenium red (RR, 1 μM, line d)were added in the beginning of the assay. (C) 3 HPA (10–
30 μM, lines b–d) were added 50 s after the beginning of the assay to the reaction media and followed by addition of 15 μM Ca2+ 100 s later, as indicated. CsA (1 μM) plus ADP (300 μM)
(line c) were added in the beginning of the assay. Controls (line a) were performed in the absence of 3 HTA or 3 HPA with addition of 15 μM Ca2+ 150 s after the beginning of the assay.
Fluorescence changes between 150 and 250 s were: (A) 6.79 ± 0.76 (control), 19.5± 3.25 (10 μM3HTA) and 52.8 ± 8.06 (30 μM3HTA), [F(2,6) = 66.92, P b 0.001] compared between
the groups; (B) 7.39± 0.34 (control), 49.7± 17.2 (30 μM3HTA), 4.63± 0.52 (30 μM3HTA+ CsA/ADP) and 10.4± 0.89 (30 μM3HTA+RR), [F(3,8) = 18.3, P b 0.001] compared
between the groups; (C) 6.64 ± 0.72 (control), 16.3 ± 4.68 (10 μM 3 HPA), 26.1 ± 3.68 (30 μM 3 HPA) and 5.12 ± 1.64 (30 μM 3 HPA + CsA/ADP), [F(3,8) =29.41, P b 0.001]
compared between the groups. CCCP (3 μM) was added in the end of the assays. Traces are representative of three independent experiments (animals) and were expressed
as fluorescence arbitrary units (FAU).
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control cellular Ca2+ homeostasis [38]. Furthermore, mPTP induction
may lead to Ca2+ release from mitochondria. It was found that 3 HTA
reduced Ca2+ retention capacity inmitochondria supported by glutamate
plus malate whose effect was prevented by CsA plus ADP, indicating the
involvement of mPTP (Fig. 4).
3.4. 3 HTA reduces NAD(P)H mitochondrial matrix content

The effect of 3 HTA on NAD(P)H matrix content was also evaluated
(Fig. 5). We observed that 3 HTA induced a decrease of NAD(P)H levels
in the presence of Ca2+. The data suggest that the reduced equivalents



Fig. 2. In vitro effects of long-chain 3-hydroxy fatty acids (LCHFA) on mitochondrial swelling in the presence of Ca2+. Increasing concentrations (10–30 μM, lines b–c) of
(A) 3-hydroxydodecanoic acid (3 HDA), (B) 3-hydroxytetradecanoic acid (3 HTA) or (C) 3-hydroxypalmitic acid (3 HPA) were added 50 s after the beginning of the assay in the reaction
media containing themitochondrial preparations (Mit, 0.5mg protein·mL−1 supported by glutamate/malate) and followed by addition of 30 μMCa2+100 s later, as indicated. A comparison
of 30 μM 3 HDA, 3 HTA and 3 HPA is depicted in panel (D). Controls (line a) were performed in the absence of 3 HTA with addition of 30 μM Ca2+ 150 s after the beginning of the assay.
Fluorescence changes between 150 and 250 s were: (A) 64 ± 19.5 (control), 103 ± 6.09 (10 μM 3 HDA) and 196 ± 19.9 (30 μM 3 HDA), [F(2,6) = 51.36, P b 0.001] compared between
the groups; (B) 64 ± 19.5 (control), 133 ± 28 (10 μM 3 HTA) and 286 ± 72 (30 μM 3 HTA), [F(2,6) = 18.36, P b 0.01] compared between the groups; (C) 64 ± 19.5 (control), 194 ±
85.4 (10 μM 3 HPA) and 435 ± 11.1 (30 μM 3 HPA), [F(2,6) = 40.85, P b 0.001] compared between the groups; (D) 64 ± 19.5 (control), 196 ± 19.9 (30 μM 3 HDA), 286 ± 72 (30 μM 3
HTA) and 435 ± 11.1 (30 μM3 HPA), [F(3,8) = 47.91, P b 0.001] compared between the groups. Alamethicin (Alm, 40 μg/mg of protein) was added at the end of the measurements. Traces
are representative of three independent experiments (animals) and were expressed as fluorescence arbitrary units (FAU).
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were oxidized or lost from the mitochondrial matrix (Fig. 5A). Further-
more CsA plus ADP and RR prevented the decrease of NAD(P)H content
induced by 3 HTA (Fig. 5B).

3.5. 3 HTA increases hydrogen peroxide (H2O2) production

The previous experiments clearly show the involvement of mPTP in
the effects elicited by 3HTA. Since it iswell established thatmPTP can be
induced by oxidative damage, we determined whether mitochondrial
H2O2 production could be induced by 3 HTA. Fig. 6 shows that 3 HTA
Fig. 3. In vitro effects of 3-hydroxytetradecanoic acid (3HTA) onmitochondrial swelling in the p
the reactionmedia containingmitochondrial preparations (Mit, 0.5mg protein·mL−1 supporte
some experiments cyclosporin A (CsA, 1 μM) plus ADP (300 μM) (line c) or ruthenium red (RR,
the absence of 3 HTAwith addition of 30 μMCa2+ 150 s after the beginning of the assay. Fluores
HTA), 47.3± 17.6 (30 μM3HTA+ CsA/ADP) and 40.7± 34.1 (30 μM3HTA+RR), [F(3,8)= 17
added at the end of the measurements. Traces are representative of three independent experim
significantly increased H2O2 generation when Ca2+ was added to the
mitochondrial preparations. It can be also observed in the figure that
CsAplusADP andRR completely prevented3HTA-inducedH2O2 increase,
highlighting the synergistic role of 3 HTA and Ca2+ inducing mPTP.

3.6. 3 HTA induces cytochrome c release

Fig. 7 shows a significant decrease of cytochrome c immunocontent
in mitochondria treated with 3 HTA and Ca2+, suggesting cytochrome c
release. Furthermore, this effect was prevented by CsA plus ADP and by
resence of Ca2+. 30 μM3HTA (lines b–d)was added 50 s after the beginning of the assay in
d by glutamate/malate) and followed by addition of 30 μMCa2+ 100 s later, as indicated. In
1 μM, line d) was added in the beginning of the assay. Controls (line a) were performed in
cence changes between 150 and 250 swere: (A) 90.7± 24.3 (control), 328±103 (30 μM3
.56, P b 0.001] compared between the groups. Alamethicin (Alm, 40 μg/mg of protein)was
ents (animals) and were expressed as fluorescence arbitrary units (FAU).

image of Fig.�2
image of Fig.�3


Fig. 4. In vitro effects of 3-hydroxytetradecanoic acid (3 HTA) on mitochondrial Ca2+ retention capacity. Ca2+ (30 μM) was added 100 s after the beginning of the assay in the reaction
media containing the mitochondrial preparations (Mit, 0.5 mg protein·mL−1 supported by glutamate/malate), 30 μM ADP and 3 HTA (10–60 μM, lines b–d), as indicated. Cyclosporin
A (CsA, 1 μM) plus ADP (300 μM) (line e) were added in the beginning of the assay. Controls (line a) were performed in the absence of 3 HTA with addition of 30 μM Ca2+ 100 s after
the beginning of the assay. Fluorescence changes between 250 and 500 s were: (A) 15.8 ± 4.38 (control), 15.8 ± 3.5 (10 μM 3 HTA), 15.1 ± 2.6 (30 μM 3 HTA), 188 ± 138 (60 μM 3
HTA) and 21 ± 2.01 (60 μM 3 HTA + CsA/ADP), [F(4,10) = 4.593, P b 0.05] compared between the groups. CCCP (3 μM) was added in the end of the assays. Traces are representative
of three independent experiments (animals) and were expressed as fluorescence arbitrary units (FAU).
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RR, supporting the involvement of mPTP on 3 HTA-induced cytochrome
c reduction. It can be also observed in the figure that the supplementa-
tion of CsA plus ADP and RR to the mitochondrial preparations resulted
in a higher level of cytochrome c, as compared to controls. This may
have occurred due to the induction of mPTP caused by Ca2+. Alm was
used as a positive control once it induces mitochondrial pore formation.

3.7. LCHFA decrease ATP levels

Finally, we tested whether LCHFA could alter ATP production. We
verified that 3 HDA, 3 HTA and 3 HPA significantly decreased ATP
content especially when incubated in the presence of Ca2+ (Fig. 8),
probably as a consequence of disruption of mitochondrial energy pro-
duction. It can be also seen in the figure that the degree of this effect
was dependent on the fatty acid carbon chain length, so that the longer
the carbon chain the greater the effect observed.

4. Discussion

In the present study we showed that the LCHFA accumulated in
LCHADandMTPdeficiencies change various parameters ofmitochondrial
bioenergetics indicative of mPTP opening in Ca2+-loaded mitochondria
from cerebral cortex of adolescent rats. We first demonstrated that 3
HTA dissipates mitochondrial membrane potential (ΔΨm) and that this
effect was much higher after Ca2+ addition. Furthermore, ruthenium
red (RR), a potent inhibitor of the mitochondrial Ca2+ uniporter [39],
prevented ΔΨm dissipation, supporting a role for Ca2+ in this effect. In
addition, 3 HTA-induced ΔΨm decrease was probably caused by mPTP
since it was accompanied by swelling and fully prevented by CsA plus
ADP and RR. It is emphasized that CsA is an effective peptide inhibitor
of mPTP by binding to cyclophilin D, a mitochondrial matrix protein
that interacts with the adenine nucleotide translocator modulating the
pore opening [40–43].

Since one of the most important functions of the mitochondria is to
control Ca2+ intracellular concentrations and dysregulation of Ca2+ ho-
meostasis is associated with disturbance of energy and redox homeo-
stasis [44–50], we tested whether 3 HTA could affect mitochondrial
Ca2+ retention capacity. We observed that 3 HTA compromised themi-
tochondrial Ca2+ retention capacity and that this effect was prevented
by CsA plus ADP and RR, reinforcing a synergistic role for Ca2+ and 3
HTA inducing mPTP. Taken together, it is conceivable that mPTP
opening could allow Ca2+ release from the matrix after reaching a
threshold overcoming mitochondrial Ca2+ retention capacity, resulting
in a nonselective inner membrane permeabilization [51–53].

3 HTA also diminished matrix NAD(P)H content after Ca2+ loading
that was avoided by CsA plus ADP and by RR, implying that the decrease
of matrix reduced equivalents may have occurred as a consequence of
nonselective inner membrane permeabilization due to mPTP. Alterna-
tively, NADH consumption resulting from activation of the electron
transport flow that enhances its oxidation, may also underlie the reduc-
tion of NAD(P)H observed in our investigation [54–56].

As regards the mechanisms by which LCHFA cause mPTP opening in
Ca2+-loaded mitochondria, this remains an open question. However, it
should be considered that induction ofmPTP can beprovokedbyuncou-
plers of oxidative phosphorylation, as well as by oxidation of membrane
protein thiol groups leading to nonselective permeabilization [51,
56–61]. Thus, considering that LCFA and particularly LCHFA were
shown to uncouple oxidative phosphorylation and to provoke oxidative
stress and protein oxidation [12,62,63,13,14,64,65], it is tempting to
speculate that these pathomechanisms may be involved in mPTP
induction by these fatty acids. On the other hand, the induction of
mitochondrial H2O2 production caused by the synergistic effect of 3
HTA and Ca2+ was prevented by CsA plus ADP and by RR, indicating
that H2O2 increase was a consequence rather than a cause of mPTP
opening, as previously found in other situations [66–69].

On the other hand, it is of note that saturated LCFA and their α,ω-
dioic acids can also induce nonspecific permeability of the inner
membrane in liver mitochondria loaded with Ca2+, although by
other mechanisms that are insensitive to CsA [16,70]. Our present
data allied to previous findings indicate that the LCHFA and the
non-hydroxylated LCFA induce nonselective permeabilization by
distinct mechanisms.

3 HTA also reduced mitochondrial cytochrome c immunocontent in
Ca2+-loaded mitochondria, probably due to increase of nonselective
inner membrane permeabilization (mPTP) caused by this fatty acid
plus Ca2+. The release of cytochrome c from the mitochondrial
intermembrane space into the cytosol provoked by mPTP typically
accompanies the osmotic swelling and the physical rupture of themito-
chondrial outer membrane [71,72]. Our observations that cytochrome
release c was prevented by CsA plus ATP or by RR support this hypoth-
esis. In addition, since the release of cytochrome c from mitochondria
into the cytosol precede the apoptosis induction by forming the
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Fig. 5. In vitro effects of 3-hydroxytetradecanoic acid (3 HTA) on mitochondrial NADH and NADPH content in the presence of Ca2+. (A) 3 HTA (10 μM–30 μM, lines b–c) was added 50 s
after the beginning of the assay to the reactionmedia containing themitochondrial preparations (Mit, 0.5mg protein·mL−1 supported by glutamate/malate) and followed by addition of
15 μMCa2+ 100 s later, as indicated. (B) 30 μM3HTA (lines b–d)was added 50 s after the beginning of the assay to the reactionmedia and followed by addition of 15 μMCa2+ 100 s later.
Cyclosporin A (CsA, 1 μM)plusADP (300 μM) (line c) or ruthenium red (RR, 1 μM, line d)was added in the beginning of the assay. Controls (line a)were performed in the absence of 3HTA
with addition of 15 μMCa2+ 150 s after the beginning the assay. Fluorescence changes between 150 and 250 swere: (A) 8.09±1.22 (control), 12.4±1.06 (10 μM3HTA) and 17.8± 1.63
(30 μM3 HTA), [F(2,6) = 40.28, P b 0.001] compared between the groups; (B) 8.09± 1.22 (control), 17.8± 1.63 (30 μM 3HTA), 5.27± 2.82 (30 μM3 HTA+ CsA/ADP) and 4.27± 0.59
(30 μM3HTA+RR), [F(3,8) = 36.71, P b 0.001] compared between the groups. CCCP (3 μM)was added in the end of the assays, as indicated. Traces are representative of three independent
experiments (animals) and were expressed as fluorescence arbitrary units (FAU).
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apoptosome complex with Apaf-1 and procaspase-9 and initiating the
caspase cascade [73–75], it is conceivable that 3 HTA may potentially
induce apoptosis by promoting mPTP in the presence of Ca2+.

Finally, we observed a reduction in ATP levels provoked by 3 HTA
and by the other LCHFA, reflecting a deleterious consequence to
mitochondrial functions. ATP decrease may have occurred due to the
uncoupling effect of these fatty acids causing impairment in themainte-
nance of ΔΨm necessary to ATP biosynthesis [76], although other
mechanisms should be investigated. Furthermore, addition of Ca2+ to
the medium exacerbated this effect, which could be caused by the
collapse of ΔΨm and/or loss of adenine nucleotides to the external
media through mPTP formation [73,77].

Our present investigation also showed that 3 HDA and 3 HPA, which
also accumulate in LCHAD andMTP deficiencies, provokedmitochondrial
swelling and reduction of ATP content, but to a variable degree. We ver-
ified that the intensity of their effects on thesemitochondrial parameters
was dependent on the size of the carbon chain.

At the present it is difficult to establish the pathophysiological signif-
icance of our data since the brain levels of LCHFA in patients affected by
LCHAD and MTP deficiencies are still unknown. However, we showed
here that the LCHFA that mostly accumulate in these disorders, particu-
larly 3 HPA and 3 HTA, reduced the mitochondrial membrane potential
and provoked swelling in the presence of calcium thatwas prevented by
CsA, ADP and RR at similar or even lower concentrations (10 μM) than
those found in plasma of the affected patients, especially during crises
of metabolic decompensation that are accompanied by encephalopathy
with coma [78,79]. It is emphasized that these crises generally follow in-
fections and accelerated catabolism that lead to increased tissue levels
of these fatty acids [79]. These data strongly indicate that the LCHFA in-
duce mPTP, a deleterious condition that causes disruption of the mito-
chondrial homeostasis. Therefore, it is presumed that our results may
be of pathophysiological relevance, especially during metabolic crises.

In a previous study we showed that the LCHFA accumulating in
LCHAD andMTP deficiencies cause uncoupling of oxidative phosphory-
lation by altering the respiratory parameters measured by oxymetry
and besides elicited mPTP in purified mitochondrial preparations from
cardiac muscle of adolescent rats [13]. In the present investigation we
demonstrated that besides inducingmPTP, these fatty acids substantial-
ly decreased ATP production and provoked significant cytochrome re-
lease in brain, that are indicative of a mitochondrial bioenergetics
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Fig. 6. In vitro effects of 3-hydroxytetradecanoic acid (3 HTA) on mitochondrial hydrogen peroxide (H2O2) production in the presence of Ca2+. (A) 60 μM 3 HTA (line b) was added 50 s
after the beginning of the assay in the reactionmedia containing the mitochondrial preparations (Mit, 0.5 mg protein·mL−1 supported by glutamate/malate) and followed by addition of
30 μM Ca2+ 100 s later, as indicated. Cyclosporin A (CsA, 1 μM) plus ADP (300 μM) (line c) or ruthenium red (RR, 1 μM, line d) was added in the beginning of the assay. Controls (line a)
were performed in the absence of 3 HTA with addition of 30 μM Ca2+ 150 s after the beginning of the assay. Antimycin A (AA, 0.1 mg/mL) was added at the end of the measurements.
Traces are representative of three independent experiments (animals) and were expressed as fluorescence arbitrary units (FAU). (B) Quantitative H2O2 production representing means
± standard deviation as a bar graph for three independent experiments (animals) and expressed as pmol/min/mg protein. *P b 0.05 compared to control; #P b 0.05, ##P b 0.01 compared
to 60 μM 3 HTA (Tukey's multiple comparison test).

Fig. 7. In vitro effects of 3-hydroxytetradecanoic acid (3 HTA) on mitochondrial cyto-
chrome c immunocontent. 30 μM 3 HTA was added 50 s after the beginning of the assay
in the reaction media containing the mitochondrial preparations (0.5 mg protein·mL−1

supported by glutamate/malate) and followed by addition of 30 μMCa2+ 100 s later. Con-
trols were performed in the absence of 3 HTAwith addition of 30 μM Ca2+ 150 s after the
beginning of the assay. In some experiments cyclosporin A (CsA, 1 μM) plus ADP (300 μM)
or ruthenium red (RR, 1 μM) was added in the beginning of the assay. Alamethicin (Alm,
40 μg/mg of protein)was used as a positive control. Total proteinwas used as loading con-
trol. Values aremeans± standard deviation for three independent experiments (animals)
and were expressed as relative intensity. *P b 0.05 **P b 0.01, ***P b 0.001 compared to
control (Tukey's multiple comparison test).

Fig. 8. In vitro effects of long-chain 3-hydroxy fatty acids (LCHFA) on ATP content in
mitochondrial preparations (Mit, 0.5 mg protein·mL−1 supported glutamate/malate).
30 μM 3-hydroxydodecanoic acid (3 HDA), 3-hydroxytetradecanoic acid (3 HTA)
and 3-hydroxypalmitic acid (3 HPA) were added in the beginning of the assay. In
some experiments, 30 μM Ca2+ was added 90 s later. Controls were performed in
the absence of LCHFA with addition of 30 μM Ca2+ 150 s after the beginning the
assay. Oligomycin A (Oligo, 1 μM·mL−1) was used as a positive control. Values are
means ± standard deviation of six independent experiments (animals) and were
expressed as nmol ATP·min−1·mg−1. *P b 0.05 **P b 0.01, ***P b 0.001 compared to
controls (Tukey's multiple comparison test).
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collapse. Therefore,wemay presume that a disturbedmitochondrial en-
ergy homeostasis caused by the LCHFA in heart and brainmay represent
a pathomechanism involved in the clinical manifestations occurring in
the affected patients.

5. Conclusion

In conclusion, our study provides for the first time evidence that
LCHFA act synergistically with Ca2+ inducing mPTP and disrupting mi-
tochondrial energy homeostasis in the brain tissue. We showed a per-
manent pore opening that strongly compromised mitochondrial
functions as maintenance of ΔΨm and NAD(P)H pool, as well as ATP
content and Ca2+ homeostasis, leading to cytochrome c release and
possibly culminating in apoptotic (or necrotic) cell death [73]. It is pro-
posed that disruption of energy homeostasismay be associatedwith the
long-term neurologic manifestations presented by patients affected by
LCHAD and MTP deficiencies. In this context, there is a growing body
of evidence that mPTP opening contributes to tissue injury in a variety
of diseases and is closely associated to neurodegeneration [80–82].
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