70 research outputs found

    Simultaneous compression of the passively mode-locked pulsewidth and pulse train

    Get PDF
    Simultaneous compression of the passively mode-locked pulse width and pulse train have been achieved by using a plano-convex unstable resonator hybrided by a nonlinear Sagnac ring interferometer. The greater than 30 mJ single pulse energy of a lone oscillator and less than or equal to 10 ps pulsewidth have been obtained. Using this system, the LAGEOS and ETALON satellites' laser ranging have been performed successfully

    Development of Shanghai satellite laser ranging station

    Get PDF
    The topics covered include the following: improvement of the system hardware; upgrading of the software; the observation status; preliminary daylight tracking capability; testing the new type of laser; and future plans

    Cyclin-Dependent Kinase Inhibitor p27Kip1 Controls Growth and Cell Cycle Progression in Human Uterine Leiomyoma

    Get PDF
    The molecular mechanism of the cell-cycle machinery in uterine leiomyoma has not yet been fully elucidated. Among the various types of cell-cycle regulators, p27Kip1 (p27) is considered to be a potent tumor suppressor. To provide further molecular basis for understanding the progression of uterine leiomyoma, our objective was to evaluate the expression level of p27 in normal myometrium and uterine leiomyoma tissue and its effect on cytogenic growth. Western blot analysis, real-time polymerase chain reaction (PCR) and immunohistochemical staining revealed that p27 protein and messenger RNA were down-regulated in uterine leiomyoma tissue and cultured cells compared to normal myometerium. Full-length human p27 cDNA was transferred using a replication-deficient recombinant adenoviral vector (Ad.p27) into uterine leiomyoma cells and evaluated the effect on cell proliferation. Transfection of Ad.p27 into uterine leiomyoma cells resulted in the induction of apoptosis, reduction in viability and proliferation of uterine leiomyoma cells. Our results suggest a new paradigm that down-regulated p27 protein expression is the possible underlying mechanism for the growth of uterine leiomyoma and over-expression of p27 induces cell death. This study provides better understanding of the control exerted by p27 in regulating growth and disease progression of uterine leiomyoma

    Genomewide association study of leprosy.

    Get PDF
    BACKGROUND: The narrow host range of Mycobacterium leprae and the fact that it is refractory to growth in culture has limited research on and the biologic understanding of leprosy. Host genetic factors are thought to influence susceptibility to infection as well as disease progression. METHODS: We performed a two-stage genomewide association study by genotyping 706 patients and 1225 controls using the Human610-Quad BeadChip (Illumina). We then tested three independent replication sets for an association between the presence of leprosy and 93 single-nucleotide polymorphisms (SNPs) that were most strongly associated with the disease in the genomewide association study. Together, these replication sets comprised 3254 patients and 5955 controls. We also carried out tests of heterogeneity of the associations (or lack thereof) between these 93 SNPs and disease, stratified according to clinical subtype (multibacillary vs. paucibacillary). RESULTS: We observed a significant association (P<1.00x10(-10)) between SNPs in the genes CCDC122, C13orf31, NOD2, TNFSF15, HLA-DR, and RIPK2 and a trend toward an association (P=5.10x10(-5)) with a SNP in LRRK2. The associations between the SNPs in C13orf31, LRRK2, NOD2, and RIPK2 and multibacillary leprosy were stronger than the associations between these SNPs and paucibacillary leprosy. CONCLUSIONS: Variants of genes in the NOD2-mediated signaling pathway (which regulates the innate immune response) are associated with susceptibility to infection with M. leprae

    Functional identification of NR2 subunits contributing to NMDA receptors on substance P receptor-expressing dorsal horn neurons

    No full text
    Abstract NMDA receptors are important elements in pain signaling in the spinal cord dorsal horn. They are heterotetramers typically composed of two NR1 and two of four NR2 subunits: NR2A-2D. Mice lacking specific NR2 subunits show deficits in pain transmission yet subunit location in the spinal cord remains unclear. We have combined electrophysiological and pharmacological approaches to investigate the composition of functional NMDA receptors expressed by lamina I, substance P receptor-expressing (NK1R+) neurons, as well as NK1R- neurons. Under low Mg2+ conditions (100 μM), the conductance of NMDA receptors at -90 mV (g(-90 mV)) with NR2A or NR2B subunits (NR2A/B) is low compared to conductance measured at the membrane potential where the inward current is maximal or maximal inward current (MIC) (ratio of ~0.07 calculated from Kuner and Schoepfer, 1996). For NR2C or NR2D subunits (NR2C/D), the ratio is higher (ratio ~0.4). NK1R+ and NK1R- neurons express NMDA receptors that give ratios ~0.28 and 0.16, respectively, suggesting both types of subunits are present in both populations of neurons, with NK1R+ neurons expressing a higher percentage of NR2C/D type NMDA receptors. This was confirmed using EAB318, an NR2A/B preferring antagonist, and UBP141, a mildly selective NR2C/D antagonist to increase and decrease the g(-90 mV)/g(MIC) ratios in both subpopulations of neurons.</p

    CO2 as a reaction medium for pyrolysis of lignin leading to magnetic cobalt-embedded biochar as an enhanced catalyst for Oxone activation

    No full text
    Carbonaceous materials have been proven as advantageous supports for anchoring cobalt (Co) nanoparticles (NPs) to formulate Co/carbon composite catalysts for Oxone activation in degrading pollutants in water. While Co/carbon composites represent attractive catalysts, most carbonaceous supports are usually sophisticatedly fabricated using fine chemicals and immobilization of Co on carbon supports requires complicated post-modifications. As biochar appears as a versatile but easily-accessible carbon, pyrolysis of Co/lignin can result in a promising Co/biochar (CoBC) catalyst for Oxone activation. Especially, when CO2 is used to replace N2 as a reaction medium for pyrolysis of Co/lignin, the syngas production from pyrolysis can be enhanced and a magnetic CoBC is also obtained. This CoBC appears as a micro-sized composite of Co nanoparticles (NPs) well-distributed and embedded within carbon matrices, and exhibits several advantageous properties, such as high porosity, large surface area and magnetism, making it an advantageous catalyst for activating Oxone in water. As decolorization of Amaranth (AMR) dye is employed as a model test, CoBC successfully activates Oxone to fully decolorize AMR within 60 min with a rate constant of 0.33 min−1. CoBC also exhibits a much higher catalytic activity than CoBC prepared from pyrolysis in N2, and Co3O4, revealing its promising advantages. The activation energy of AMR decolorization by CoBC-activated Oxone is 48 kJ/mol, which is also lower than those reported in other studies. CoBC can be also re-used to activate Oxone over multiple cycles. These findings validate that CoBC is certainly a promising heterogeneous catalyst, which can be simply prepared from pyrolysis of Co/lignin in CO2 with concomitant enhanced syngas production
    corecore