14 research outputs found

    Towards Quantitative Evaluation of Tissue Absorption Coefficients Using Light Fluence Correction in Optoacoustic Tomography.

    Get PDF
    Optoacoustic tomography is a fast developing imaging modality, combining the high contrast available from optical excitation of tissue with the high resolution and penetration depth of ultrasound detection. Light is subject to both absorption and scattering when traveling through tissue; adequate knowledge of tissue optical properties and hence the spatial fluence distribution is required to create an optoacoustic image that is directly proportional to chromophore concentrations at all depths. Using data from a commercial multispectral optoacoustic tomography (MSOT) system, we implemented an iterative optimization for fluence correction based on a finite-element implementation of the delta-Eddington approximation to the Radiative Transfer Equation (RTE). We demonstrate a linear relationship between the image intensity and absorption coefficients across multiple wavelengths and depths in phantoms. We also demonstrate improved feature visibility and spectral recovery at depth in phantoms and with in vivo measurements, suggesting our approach could in the future enable quantitative extraction of tissue absorption coefficients in biological tissue.This work was funded by the EPSRC-CRUK Cancer Imaging Centre in Cambridge and Manchester (C197/A16465); CRUK (C47594/A16267, C14303/A17197); EU FP7 framework programme (FP7-PEOPLE-2013-CIG-630729) and the University of Cambridge EPSRC Impact Acceleration Account via a Partnership Development Award.This is the author accepted manuscript. The final version is available from the Institute of Electrical and Electronics Engineers via http://dx.doi.org/10.1109/TMI.2016.260719

    Small Wind Turbines: Specification, Design, and Economic Evaluation

    Get PDF
    In this work, we consider various aspects of small wind turbines’ (SWTs) design and operation. First, an extensive literature study is presented by considering SWTs specification, market statistics, the smart grid, and the prosumer concepts as well as the most important parameters affecting the efficiency of wind turbines. Then, both the literature review and series of coupled numerical simulations investigating impact of the chosen design solutions on small wind turbine operation are performed. It allowed objective evaluation of different design approaches, which in turn enabled the systematic identification of actual limitations as well as the opportunities for specific design solutions of SWTs: horizontal axis wind turbines (HAWTs) and vertical axis wind turbines (VAWTs); the rotor position in relation to the tower (upwind vs. downwind); and diffusor-augmented wind turbine (DAWT). Additionally, an economic evaluation is carried with the use of an advanced numerical Weather Research & Forecasting (WRF) model. It is shown that auxiliary power generation using privately owned SWTs can be an economically viable option. Finally, a set of design goals for future SWTs is formulated based on the performed numerical analyses

    The Potential of Photoacoustic Imaging in Radiation Oncology

    Get PDF
    Radiotherapy is recognized globally as a mainstay of treatment in most solid tumors and is essential in both curative and palliative settings. Ionizing radiation is frequently combined with surgery, either preoperatively or postoperatively, and with systemic chemotherapy. Recent advances in imaging have enabled precise targeting of solid lesions yet substantial intratumoral heterogeneity means that treatment planning and monitoring remains a clinical challenge as therapy response can take weeks to manifest on conventional imaging and early indications of progression can be misleading. Photoacoustic imaging (PAI) is an emerging modality for molecular imaging of cancer, enabling non-invasive assessment of endogenous tissue chromophores with optical contrast at unprecedented spatio-temporal resolution. Preclinical studies in mouse models have shown that PAI could be used to assess response to radiotherapy and chemoradiotherapy based on changes in the tumor vascular architecture and blood oxygen saturation, which are closely linked to tumor hypoxia. Given the strong relationship between hypoxia and radio-resistance, PAI assessment of the tumor microenvironment has the potential to be applied longitudinally during radiotherapy to detect resistance at much earlier time-points than currently achieved by size measurements and tailor treatments based on tumor oxygen availability and vascular heterogeneity. Here, we review the current state-of-the-art in PAI in the context of radiotherapy research. Based on these studies, we identify promising applications of PAI in radiation oncology and discuss the future potential and outstanding challenges in the development of translational PAI biomarkers of early response to radiotherapy

    Magnetic resonance imaging detects white adipose tissue beiging in mice following PDE10A inhibitor treatment

    No full text
    Weight gain is a common harmful side effect of atypical antipsychotics used for schizophrenia treatment. Conversely, treatment with the novel phosphodiesterase-10A (PDE10A) inhibitor MK-8189 in clinical trials led to significant weight reduction, especially in patients with obesity. This study aimed to understand and describe the mechanism underlying this observation, which is essential to guide clinical decisions. We hypothesized that PDE10A inhibition causes beiging of white adipose tissue (WAT), leading to weight loss. Magnetic resonance imaging (MRI) methods were developed, validated, and applied in a diet-induced obesity mouse model treated with a PDE10A inhibitor THPP-6 or vehicle for measurement of fat content and vascularization of adipose tissue. Treated mice showed significantly lower fat fraction in white and brown adipose tissue, and increased perfusion and vascular density in WAT versus vehicle, confirming the hypothesis, and matching the effect of CL-316,243, a compound known to cause adipose tissue beiging. The in vivo findings were validated by qPCR revealing upregulation of Ucp1 and Pcg1-α genes, known markers of WAT beiging, and angiogenesis marker VegfA in the THPP-6 group. This work provides a detailed understanding of the mechanism of action of PDE10A inhibitor treatment on adipose tissue and body weight and will be valuable to guide both the use of MK-8189 in schizophrenia and the potential application of the target for weight loss indication

    Photoacoustic Tomography Detects Response and Resistance to Bevacizumab in Breast Cancer Mouse Models.

    No full text
    UNLABELLED: Angiogenesis is an established prognostic factor in advanced breast cancer, yet response to antiangiogenic therapies in this disease remains highly variable. Noninvasive imaging biomarkers could help identify patients that will benefit from antiangiogenic therapy and provide an ideal tool for longitudinal monitoring, enabling dosing regimens to be altered with real-time feedback. Photoacoustic tomography (PAT) is an emerging imaging modality that provides a direct readout of tumor hemoglobin concentration and oxygenation. We hypothesized that PAT could be used in the longitudinal setting to provide an early indication of response or resistance to antiangiogenic therapy. To test this hypothesis, PAT was performed over time in estrogen receptor-positive and estrogen receptor-negative breast cancer xenograft mouse models undergoing treatment with the antiangiogenic bevacizumab as a single agent. The cohort of treated tumors, which were mostly resistant to the treatment, contained a subset that demonstrated a clear survival benefit. At endpoint, the PAT data from the responding subset showed significantly lower oxygenation and higher hemoglobin content compared with both resistant and control tumors. Longitudinal analysis revealed that tumor oxygenation diverged significantly in the responding subset, identifying early treatment response and the evolution of different vascular phenotypes between the subsets. Responding tumors were characterized by a more angiogenic phenotype when analyzed with IHC, displaying higher vessel density, yet poorer vascular maturity and elevated hypoxia. Taken together, our findings indicate that PAT shows promise in providing an early indication of response or resistance to antiangiogenic therapy. SIGNIFICANCE: Photoacoustic assessment of tumor oxygenation is a noninvasive early indicator of response to bevacizumab therapy, clearly distinguishing between control, responding, and resistant tumors within just a few weeks of treatment.This work was funded by Cancer Research UK (C14303/A17197 & C9545/A29580 - I Quiros-Gonzalez, M A Golinska, E Brown, L Ansel-Bollepalli, D-L Couturier, S E Bohndiek; C47594/A16267 – L Ansel-Bollepalli; C197/A16465 – M Tomaszewski). L Hacker was funded from NPL’s MedAccel programme financed by the Department for Businesses, Energy and Industrial Strategy’s Industrial Strategy Challenge Fund
    corecore