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Abstract (200 words) 

 30	

Background: Optoacoustic tomography (OT) of breast tumour oxygenation is a 

promising new technique, currently in clinical trials, which may help to determine 

disease stage and therapeutic response. However, the ability of OT to distinguish 

breast tumours displaying different vascular characteristics has yet to be established. 

The aim of the study is to prove OT as a sensitive technique for differentiating breast 

tumour models with manifestly different vasculatures. 

Methods: Multispectral OT (MSOT) was performed in oestrogen-dependent (MCF-7) 

and oestrogen-independent (MDA-MB-231) orthotopic breast cancer xenografts. 

Total haemoglobin (THb) and oxygen saturation (SO2
MSOT) were calculated. 

Pathological and biochemical evaluation of the tumour vascular phenotype was 

performed for validation. 

Results: MCF-7 tumours show SO2
MSOT similar to healthy tissue in both rim and 

core, despite significantly lower THb in the core. MDA-MB-231 tumours show 

markedly lower SO2
MSOT with a significant rim-core disparity. Ex-vivo analysis 

revealed that MCF-7 tumours contain fewer blood vessels (CD31+) that are more 45	

mature (CD31+/aSMA+) than MDA-MB-231. MCF-7 presented higher levels of 

stromal VEGF and iNOS, with increased NO serum levels. The vasculogenic process 

observed in MCF-7 was consistent with angiogenesis, while MDA-MB-231 appeared 

to rely more on vascular mimicry.  

Conclusion: OT is sensitive to differences in the vascular phenotypes of our breast 

cancer models.  
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Introduction 

Management of breast cancer has improved significantly in the last two 

decades (Chen et al. 2014). Nonetheless, the high heterogeneity of the disease 

means some subtypes have good prognosis while others lack a successful 

treatment. As a result, breast cancer is still the third most common cause of cancer-

related death in the EU (European Commission 2013). The different subtypes of 

breast cancer (Curtis et al. 2012) reflect different aspects of tumour biology, such as: 

cell of origin; hormone susceptibility; and receptor status. Factors such as 

angiogenesis, inflammatory and immune responses, and oxidative stress show 10	

significant cross-talk (Kundu & Surh 2012; Dewhirst et al. 2008) and play an 

important role in breast cancer progression and response to therapy (Bloom, H.J., 

Richardson 1957; Zardavas et al. 2015; Carmeliet & Jain 2000; Curtis et al. 2012). In 

particular, angiogenesis is considered a rate-limiting step in breast cancer 

progression and holds prognostic significance (Lam et al. 2016). 

Imaging represents the standard-of-care for breast cancer detection and 

monitoring. X-ray and ultrasound are normally used together to improve the detection 

of the lesions, with magnetic resonance imaging (MRI) assisting with delineation of 

benign and malignant masses (Royal College of Radiologists 2010). However, there 

is presently no validated imaging technique to measure the functional effects of 20	

angiogenesis incorporated in the routine medical diagnosis of breast cancer. 

 In identifying a candidate imaging technique to overcome this limitation, 

intrinsic sensitivity to the functional effects of angiogenesis, including changes in 

oxygen supply and demand, hypoxia and perfusion, is preferable. The majority of 

existing clinical techniques need exogenous contrast agents: contrast enhanced 

ultrasound with microbubbles for perfusion and angiogenesis; dynamic contrast 

enhanced MRI with gadolinium for perfusion; and H2
15O or FMISO positron emission 

tomography for perfusion and hypoxia respectively (Mandic et al. 2016; Kenny 2016). 
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Potential for associated toxicity and side effects of contrast agents limits the recurrent 

use of these in the same patient (Rogosnitzky & Branch 2016). Some imaging 30	

techniques are not dependent on contrast agents, including Doppler ultrasound, 

Blood Oxygen Level Dependent (BOLD) and Oxygen-Enhanced (OE) MRI, but they 

lack sensitivity (Howe et al, 2001; Hallac et al, 2014).  Imaging biomarkers of tumour 

oxygenation (O’Connor et al. 2016) could assist with: selection of appropriate 

therapies; definition of ‘windows’ for combination therapy; monitoring therapeutic 

response and reducing healthcare costs of targeted therapy (Kambadakone et al. 

2015; Bohndiek et al. 2012).  

Optoacoustic Tomography (OT) is an emerging imaging modality poised for 

clinical translation that combines the high contrast of optical imaging with the spatial 

resolution of ultrasound (Wang 2009). The absorption of pulsed laser energy in 40	

tissues generates pressure waves that can be detected by ultrasound transducers. 

OT is intrinsically sensitive to oxy- and deoxy-haemoglobin, adipose tissue and water 

content (Beard 2011), enabling detailed characterisation of tumour angiogenesis. 

Clinical OT operates at up to 5 cm depth in tissue (Menke 2015). Early results 

characterising breast lesions in clinical trials have shown increased haemoglobin 

content of lesions compared to normal breast parenchyma (Heijblom et al, 2015; 

Heijblom et al, 2016). The application OT using haemoglobin and other endogenous 

chromophores such as melanin or fat suggests that this technique this broad 

potential not only in the breast, but also for studying other superficial tumour types 

and beyond cancer, for example in inflammatory diseases (Zackrisson et al. 2014; 50	

McNally et al. 2016; Knieling et al. 2017). However, despite initial promise, there 

remain some limitations, one of them importantly being validation of the relationship 

between OT image features and underlying tumour biology. 

To accelerate clinical translation of optoacoustic imaging as a routine 

diagnostic and monitoring tool, it is imperative to overcome this limitation and better 

establish the potential of OT, in our case, in clinical breast applications. We have 
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studied the angiogenic microenvironments generated in two breast cancer xenograft 

models: MCF-7 is an oestrogen-dependent tumour and MDA-MB-231 is an 

aggressive, oestrogen-independent tumour (Iorns et al. 2012). Here, we confirm that 

the distinct angiogenic properties of these tumours can be sensitively detected 60	

through OT features and explain our findings through detailed characterisation of the 

tumour vascular phenotype.  
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Material and Methods 

 

Cell lines  

The human adenocarcinoma cell lines MCF-7 (Oestrogen Receptor +, OR+) 70	

and MDA-MB-231 (Oestrogen Receptor-, OR-) were obtained from the Cancer 

Research UK (CRUK) Cambridge Institute Biorepository from the University of 

Cambridge. Experiments were performed when cells were between passage 20-25 

for both MCF-7 and MDA-MB-231. Authentication using Genemapper ID v3.2.1 

(Genetica) by STR Genotyping (1/2015) showed 100% match with the reference 

sequence in both cases. Cells were maintained in DMEM supplemented by 10% of 

FBS at 37ºC in 5% CO2. Oxygen consumption was measured using the MitoXpress 

Xtra Oxygen Consumption assay (see Supplementary Information). 

 

Matrigel culture assay 80	

A 24 well plate was pre-coated with Matrigel (growth factor reduced, SLS) and 

incubated for 30 min at 37ºC. The MCF-7 or MDA-MB231 cells were added to the 

pre-coated plate at 105 cells per well in DMEM-F12 medium supplemented with 2% 

FBS. Images were captured after 24 h using an inverted microscope (Nikon Eclipse 

TS100).  

 

In vivo models 

All animal procedures were conducted in accordance with project and 

personal licenses, reviewed by the Animal Welfare and Ethical Review Board at the 

CRUK Cambridge Institute, and issued under the United Kingdom Animals (Scientific 90	

Procedures) Act, 1986. All the procedures meet the standards required by the 

UKCCCR guidelines (Workman et al. 2010). Seven week-old immunodeficient female 

nude (BALB/c nu/nu) mice (n=20; Charles River) were inoculated orthotopically in the 

mammary fat pad of both flanks with 105 cells (either MCF-7, n=10 or MDA-MB-231, 
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n=10, random group assignment) in a final volume of 100 µL of 1:1 DMEM (GIBCO) 

and matrigel (BD). Power calculations to determine group size could not be 

performed in the first instance due to absence of previous data with this particular 

model and imaging modality, therefore the group size was based on our previous 

experience conducting in vivo optoacoustic tomography studies in other cell-line 

derived mouse tumour models (S. E. Bohndiek et al. 2015). For MCF-7, endogenous 100	

oestrogen levels were supplemented by surgical implantation of oestrogen pellet 

(0.72 mg/pellet, 90 days release; Innovative Research of America) in the scruff of the 

neck. In the MDA-MB-231 group, 1 mouse did not develop any tumours and 3 mice 

developed only 1 tumour; in the MCF-7 group, 1 mouse developed 1 tumour only. All 

tumour-bearing animals were entered into the study. For the tissue analysis, 4 

animals were excluded from the MCF-7 cohort due to side effects caused by the 

oestrogen pellet (bladder obstruction and skin rash with scabs). Otherwise, all 

tumours were included in all analyses. Animals were kept in hermetic cages with 

individual air supply through an EPA filter to guarantee sterile conditions, in 12/12 

hours ON/OFF light cycles, with enriched environment and food and water ad libitum.  110	

All data acquisition was performed unblinded. Mice were imaged weekly after 

inoculation. Serum samples were taken at 3 and 6 weeks after tumours were 

detectable. Tumours were measured externally using vernier callipers (Figure S1A-

D); according with local procedures, tumour volumes were calculated using the 

formula (A*b*b) being “A” the longest axis of the tumour and “b” the shortest. When 

the individual tumour sizes were over 1.5 cm diameter or overall tumour volume per 

mouse was over 10% of body weight, animals were euthanized by exsanguination 

and cervical dislocation as confirmation of death. Tumours were collected for 

histopathology and molecular biology assays. Immunohistochemistry stains included: 

CD31, alpha Smooth Muscle Actin (aSMA), oestrogen receptor (OR), Vascular 120	

Endothelial Growth Factor (VEGF), Carbonic Anhydrase IX (CA-IX), Periodic Acid-

Schiff (PAS), Arginase and inducible Nitric Oxide Synthase (iNOS) as detailed in the 
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Supplementary Information. Western-blot for nitrotyrosine and VE-cadherin was 

performed according to standard methods, as was measurement of oxidative 

modification (see Supplementary Information). 

 

Optoacoustic tomography 

 A commercial small animal MultiSpectral Optoacoustic Tomography (MSOT) 

system (inVision 256-TF; iThera Medical GmbH) was used in this study. The system 

has been described in detail elsewhere (Dima et al. 2014; Morscher et al. 2014). 130	

Briefly, a tunable (660–1300 nm) optical parametric oscillator (OPO), pumped by a 

nanosecond (ns) pulsed Nd:YAG laser, with 10Hz repetition rate and up to 7ns pulse 

duration is used for signal excitation. Light is delivered to the sample through a 

custom optical fibre assembly to obtain a uniform diffuse ring of illumination over the 

imaging plane. Coupling of the sample to the transducers is achieved using a water 

bath, filled with degassed and deionized water. An array of transducers covering an 

angle of 270° is used as the detector allowing tomographic reconstruction.  

Mice were prepared according to our standard operating procedure (Joseph 

et al. 2017) and following UKCCCR guidelines (Workman et al. 2010). Briefly, mice 

were anaesthetized using <3% isoflurane in 100% oxygen and placed in a custom 140	

animal holder (iThera Medical), wrapped in a thin polyethylene membrane, with 

ultrasound gel (Aquasonic Clear, Parker Labs) used to couple the skin to the 

membrane. The holder was then placed within the MSOT system and immersed in 

degassed water maintained at 36°C for Hb and HbO2 imaging acquisition. The 

animal respiratory rate was maintained in the range 70-80 bpm with ~1.5% isoflurane 

concentration for the entire scan. The animal holder was translated along the oral-

caudal axis of the tumour and serial images every 0.5 mm were taken for all the 

animals. Images were acquired using 6 wavelengths between 700 nm and 950 nm, 

with an average of 10 pulses per wavelength. Each slice took 7 s to acquire, with 

overall imaging sessions lasting for a time ranging between 3-8 minutes. 150	
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Image and statistical analysis 

 All analysis was performed unblinded. Histopathological analysis of paraffin 

embedded tissue sections was performed on images scanned at 20x magnification 

using an Aperio ScanScope (Leica Biosystem) scanner, a whole tumour section of 

the wider tumour area was analysed. ROIs were drawn over the whole viable tumour 

area. The percentage of viable area was estimated in H&E sections (Figure S1E). 

The parameters measured were the following: CD31 staining= positive pixel 

count/ROI area; CD31 microvessel density= vessels marked by CD31/ROI area; 

ASMA positivity=positive pixel count /ROI area; Mast cell density= cells marked by 160	

toluidine blue/ROI area, CA-IX staining= positive pixel count/ROI area. Oesotrogen 

receptor status was confirmed in MCF-7 tumours using the percentage of positive 

nuclei (Figure S1F). CD31/PAS analyses were performed as follows, for same slide 

analysis 3 random fields per slide were studied, blood vessels were identified and 

percentage of CD31 positive blood vessels were identified by an expert. The 

quantification was performed blindly. In sequential adjacent tissue sections. Slides 

were scanned in an Axio Scan Z1 (ZEISS) and Halo Software (v2.1.1602) was used 

to synchronise the images. PAS positive blood vessels were identified by a 

histopathologist (S.J.A.) by drawing ROIs in 5 random fields per tumour sample 

(magnification 20x). An algorithm to quantify corresponding CD31 intensity analysed 170	

the presence of the protein in the blood vessel area. 

For arginase and iNOS IHC quantification was performed using Image J 

software. Colour deconvolution for Haematoxylin counterstain of DAB (H-DAB) 

coordinates was applied; after 8-bit conversion the same threshold (122 and 107 for 

iNOS and arginase respectively) was applied to all the images. The positive pixels 

were counted using particle analysis. The average of the sum of the positive particles 

per field was the metric used for each sample and at least 3 fields (20x) were 

analysed per sample. 
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Optoacoustic tomography analysis was performed using ViewMSOT software 

(v3.6.0.119; iThera Medical GmbH). Model–based image reconstruction and 180	

multispectral processing were applied to retrieve the relative signal contributions of 

oxy- (HbO2) and deoxy- (Hb) haemoglobin. Regions of Interest (ROIs) were drawn 

for the tomographic section in which the tumour presented the largest area (Figure 

1A). Reference values from an ROI drawn around the abdominal aorta and vena 

cava were taken in the same anatomical plane, before they branch for the junction 

with the iliac bone (Figure 1A). ROIs were drawn over: the whole tumour; tumour rim 

(taken as 1 mm outer circumference of the tumour) and tumour core (the tumour area 

inside the 1 mm rim). OT measured ROI tumour areas correlated with tumour volume 

in both models (Figure S1G,H). Average and maximum intensities for HbO2 and Hb 

were measured. Optoacoustic tomography is only able to accurately resolve absolute 190	

SO2 if the recorded signal is directly related to the absorbed optical energy 

distribution, which requires knowledge of the light fluence distribution, system 

response and Grueneisen parameter (Cox et al. 2012). We therefore denote the 

oxygenation metric derived in this study as an apparent metric, SO2
MSOT rather than 

absolute SO2. SO2
MSOT was computed as the ratio of HbO2 to total haemoglobin 

signal in the ROI (THb = HbO2+Hb). 

 Statistical analysis was performed using Prism (GraphPad). Each tumour was 

considered as an independent biological replicate. All data are shown as mean ± 

SEM unless otherwise stated. For end time point comparisons between the two 

cohorts for optoacoustic signals, histopathology results, plasma quantification, ELISA 200	

and western-blot, unpaired 2 tailed t-test was performed. For end time point 

comparisons between tumour rim and core within the same cohort, paired 2 tailed t-

test was performed. For time course comparison within the same cohort, one-way 

ANOVA followed by Tukey’s test for multiple comparisons when applicable and 

Pearson correlation was tested. Significance is assigned for p-values <0.05. 
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Results 

 

Non-invasive assessment of tumour vasculature using optoacoustic 

tomography reveals different phenotypes between MCF-7 and MDA-MB-231 210	

models.  

The two breast cancer cell lines were chosen due to their biological 

differences: less aggressive, better differentiated phenotypes usually present a 

pronounced paracrine activity and recruit a more complex microenvironment, while 

the more aggressive, less differentiated types tend to acquire mesenchymal 

characteristics (D’Anselmi et al. 2013). Therefore, we expected these two cell lines 

present differences in vasculature when orthotopically implanted in mice. 

Exemplar optoacoustic tomography (OT) image slices are shown in Figure 

1A. Reproducibility based on the coefficient of variation for all OT metrics was tested 

over 3 repeated measurements made over 48 hours (Figure S2A). As we assessed 220	

previously in healthy organs, oxygen saturation (SO2
MSOT) and total haemoglobin 

(THb) exhibit a lower coefficient of variation compared to the direct measurements of 

oxy- and deoxy-haemoglobin (Hb and HbO2) (Joseph et al. 2017) hence we focused 

on the measurement of SO2
MSOT and THb for the remainder of the analysis. The 

SO2
MSOT in established MDA-MB-231 tumours was significantly lower than both MCF-

7 tumours and the reference region (Figure 1B; SO2
MSOT = 46±1% vs. 55±2 and 

55±3% for the reference region in the same mice respectively). The SO2
MSOT in MCF-

7 tumours was equivalent to the reference region in the same mice. The THb in the 

tumour is significantly lower than in the reference and no difference was observed 

between the tumours generated by both models (Figure 1C). 230	

 Since OT is fast, non-invasive and label free, longitudinal monitoring of 

tumour development is possible. We performed weekly imaging sessions in all mice 

following tumour inoculation. The different oxygenation levels observed in the 

established tumours is also discernible early in the time course analysis and 
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maintains throughout tumour growth. A trend towards decreasing SO2
MSOT (Figure 

S2B) is confirmed when the SO2
MSOT of the MCF-7 tumour is corrected by the 

SO2
MSOT of the reference (Figure S2C, Pearson p=0.001), accounting for any drifts in 

OT performance over longer term studies. THb is not affected during tumour growth 

(Figure S2E). No change in SO2
MSOT or THb is observed in the MDA-MB-231 tumours 

throughout the time course.  240	

 

Optoacoustic tomography detects spatial variation in vascular maturity.  

Tumour oxygenation generally decreases with depth, as the outer rim of the 

tumour can be well oxygenated by diffusion but the core of the tumour experiences 

perfusion- and diffusion-limited access to oxygen (Hendriksen et al. 2009). We thus 

hypothesised that OT would detect a lower total haemoglobin and oxygen saturation 

in the core of our tumour models. To test this hypothesis, we drew additional regions 

of interest to delineate two areas of the tumour (Figure 2A): the rim, defined as the 

perimeter area of 1 mm depth into the tumour; and the core, the rest of the tumour 

area after the rim has been excluded. Both tumour models present a significant 250	

reduction in THb between the rim and the core (Figure 2B; MCF-7 THb = 14.4±1.4 

rim vs 7.8±0.6 core; MDA-MB-231 THb = 15.0±1.1 rim vs 8.7±0.9 core). However, 

only MDA-MB-231 tumours show a significant reduction in SO2
MSOT between the rim 

and the core (Figure 2C; MDA-MB-231 SO2
MSOT = 47.7±2.1 rim vs 38.0±2.3 core). 

The underlying Hb and HbO2 values (Figure S3A,B) show comparable trends.  

Given the different growth rates observed for the two breast tumour models 

(Figure S1A-D), we also performed a size-matched analysis of this spatial 

heterogeneity. We divided the tumours into small (<10 mm2), medium (10-20 mm2), 

large (20-30 mm2) and very large (>30 mm2) size classes according to ROI area 

measured by OT (Figure 2D), which correlates with tumour volume (Figure S1G,H). 260	

Equal numbers of “large” MCF-7 and MDA-MB-231 tumours were available, so we 

chose this group for our size-matched analysis. The rim-core behaviour found within 
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each model in the whole cohort analysis persisted in the size-matched analysis 

(Figure 2E,F). When comparing the THb between models (i.e. MCF-7 rim compared 

to MDA-MB-231 rim; MCF-7 core compared to MDA-MB-231 core) we observed no 

significant differences (Figure 2E). The SO2
MSOT was similar for the rims of both 

groups while the core of MCF-7 had significantly higher SO2
MSOT than the core of 

MDA-MB-231 tumours of similar size (Figure 2F). Again, the underlying Hb and HbO2 

values (Figure S3C,D) confirm these findings. The dynamic of the oxygenation in rim 

and core was also analysed over time (Figure S3E). The behaviour was similar to 270	

previous result, with the average oxygenation being higher in MCF-7 than in MDA-

MB-231. The levels of oxygenation in MCF-7 are higher in the core at the earlier time 

points but the rim and core become comparable at later time points. MDA-MB-231 

tumours showed similar oxygenation in the rim compared to the core in the first 

stages of tumour development, with disparity arising later. Taken together, these 

findings show MCF-7 tumours exhibit high oxygenation, similar to healthy tissue, 

indicating a functional vasculature in both their rim and core; conversely, MDA-MB-

231 tumours show a poorer oxygenation overall, likely driven by their poorly 

oxygenated core. 

 280	

Histological assessment proves the higher maturity of the vessels in MCF-7 

tumours. 

 OT assessment of THb and SO2
MSOT relies on the presence of blood within 

the tumour mass; consequently, differences in vascular density and function would 

be expected to modify these imaging biomarkers. Mature, functional blood vessels 

are supported by an effective vascular network that includes at least two cell types: 

endothelial cells, forming the blood vessel wall; and pericytes, providing structural 

coverage to resist the blood flow. In order to establish the underlying vascular density 

and function in the two breast tumour models, we examined the endothelial and 

pericyte layers using IHC for CD31 and α-Smooth Muscle Actin (ASMA) respectively 290	
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(Figure 3A). Both overall CD31 staining and microvessel density (MVD) were 

significantly higher in MDA-MB-231 tumours (Figure 3B,C; CD31: 0.04±0.006 MCF-7 

vs 0.21±0.03 MDA-MB-231; MVD: 5.3x10-5±0.4x10-5 MCF-7 vs 1.1x10-4±0.7x10-5 

MDA-MB-231). The vessel wall thickness was significantly higher in MCF-7 tumours 

(Figure 3D; 2.38±0.05 MCF-7 vs 2.14±0.03 MDA-MB-231), which also showed a 

much higher staining of ASMA co-localised with CD31 (Figure 3E; 3.4x10-7±1.1x10-7 

MCF-7 vs 0.6x10-7±0.2x10-7 MDA-MB-231). While MCF-7 tumours exhibit mostly 

strong areas stained by CD31 and always surrounded by strong ASMA staining, 

MDA-MD-231 tumours showed positive low staining of CD31 in areas where no 

ASMA staining was detected, probably representing the immature vasculature 300	

generated in this tumour model (Figure 3A, arrowheads), These results indicate that 

the blood vessels in MCF-7 tumours present pericyte or media layer, being more 

mature compared to MDA-MB-231 tumours, which contain poorly developed blood 

vessels. 

 

The angiogenic-related microenvironment is different between both models. 

 In order to characterise the origin of the different vasculature we studied 

different aspects that are able to influence the angiogenesis process. We sought to 

better understand the connection between the non-invasive OT imaging data and the 

underlying tumour biology relating to vessel formation, including hypoxia and 310	

inflammation. The relationship between blood oxygenation as measured by OT, and 

tissue oxygenation is affected by the vascular structure and metabolism of the 

tumour. Therefore, we first assessed the basal oxygen consumption of both cell lines, 

finding that the oxygen consumption in MCF-7 cells is significantly higher than in 

MDA-MB-231 cells (Figure 4A; 8.07±1.33 MCF-7 vs 4.03±0.58 MDA-MB-231). We 

then confirmed that MDA-MB-231 tumours also exhibit higher levels of hypoxia, by 

assessing tumour expression of Carbon Anhydrase IX (CA-IX), a protein up-

regulated in hypoxic conditions (Figure 4B; 0.53±0.04 MCF-7 vs 0.73±0.02 MDA-MB-
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231). This reinforces our vascular IHC analysis, indicating that the lower levels of 

blood oxygenation in the MDA-MB-231 tumours is likely due to the lower vascular 320	

maturity, which limits oxygen delivery to the tumour tissue. 

Next, we determined the tumour and serum levels of vascular endothelial 

growth factor (VEGF), one of the most important pro-angiogenic factors (Hoeben et 

al. 2004). VEGF can be secreted by stromal cells, due to inflammation, and directly 

by tumour cells under hypoxia. The local levels of VEGF in the tumour assessed by 

IHC were significantly higher in MCF-7 than in MDA-MB-231 tumours (Figure 4C; 

0.63±0.06 MCF-7 vs 0.55±0.03 MDA-MB-231). To elucidate the source of VEGF, we 

measured the serum levels of human VEGF (hVEGF), coming from the tumour cells, 

and mouse VEGF (mVEGF), coming from host tissue. Although the levels of hVEGF 

are similar in both tumour models, mVEGF is significantly increased in the serum of 330	

mice bearing MCF-7 (Figure 4D; 86.2±10.6 MCF-7 vs 15.7±6.2 MDA-MB-231), 

pointing to the stromal compartment as the main source of VEGF in MCF-7 model. 

Interestingly, another important mediator of inflammation and endothelial 

homeostasis, nitric oxide (NO), was also significantly increased in serum of mice 

bearing MCF-7 tumours (Figure 4E; 210.6±45.9 MCF-7 vs 40.8±4.8 MDA-MB-231). 

Since NO can be produced by macrophages, we assessed by IHC iNOS expression, 

to denote type 1 macrophages and arginase expression, to denote type 2 

macrophages (He & Carter 2015). The levels of these proteins (both of mouse origin) 

were significantly higher in MCF-7 tumours (Figure 4F; iNOS: 3284±888 MCF-7 vs 

850±182 MDA-MB-231; Arginase: 10111±2542 MCF-7 vs 1002±298 MDA-MB-231). 340	

This increase occurs without any coincident increase in oxidative stress (Figure S4). 

Taken together these results suggest that the main driving force for angiogenesis in 

MCF-7 tumours is inflammation rather than local hypoxic stimuli.  

 Given the lack of macrophage infiltration and low levels of mVEGF, an 

inflammatory stimulus could not explain the vascular features of the MDA-MB-231 

tumours. Furthermore, despite a high density of tumour blood vessels, MDA-MB-231 
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tumours show significantly lower VEGF staining. To clarify which vascular pathway 

was activated in these cells, we checked the ability of these cells to trans-differentiate 

into endothelial-like tubular structures in matrigel, a process referred to as ‘vascular 

mimicry’ (VM), which has been previously reported. In line with previous results, our 350	

MDA-MB-231 cells form such structures after 24h of 3D matrigel culture (Figure 5A). 

We analysed the in vivo capacity of VM in both cell lines by studying the expression 

of CD31 and PAS in blood vessels. Vessels derived by VM are PAS positive but do 

not express CD31 (Maniotis et al. 1999). We identified PAS-positive blood vessels 

and then quantified their positivity for CD31 staining (Figure 5B; see also Figure S5). 

We observed significantly fewer CD31+/PAS+ vessels in MDA-MB-231 tumours 

compared with MCF-7 derived tumours (Figure 5C). The MDA-MB-231 tumours also 

showed detectable expression of VM marker VE-Cadherin (Williamson et al. 2016) 

(Figure 5D; positive in 8 of 15 tumours compared to 0 of 8 tumours in MCF-7). The 

presence of vascular mimicry that we have identified in MDA-MB-231 tumours may 360	

explain in part their poorer overall oxygenation. 
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Discussion 

 The aim of this study was to define whether OT can detect differences in the 

vasculature and oxygenation of two biologically different breast cancer xenografts. 

We sought to determine whether the features defined by OT were connected with the 

underlying vascular phenotype. To achieve these aims, we used two different breast 

cancer cell lines exemplifying different stages of the breast cancer evolution. We 

studied the functional OT image information relating to the vasculature, including 

changes in haemoglobin concentration (THb) and oxygenation (SO2
MSOT) and 370	

evaluated the biological features that underlie these features.  

Globally, our results confirm OT is sufficiently sensitive to differentiate in vivo 

and in real-time the vasculature features of the tumours generated by two breast 

cancer cell lines as representing different stages of the disease. Our oestrogen 

dependent MCF-7 tumours showed an average oxygenation similar to normal blood 

vasculature, which was also much higher than MDA-MB-231 tumours. The average 

oxygenation of MCF-7 tumour tissue decreased over time as the tumour developed, 

whereas in MDA-MB-231 tumours, oxygenation remained low across the time 

course. The work from Wilson et al described alterations in THb and increased SO2 

during initiation, promotion and progression in a transgenic breast cancer model 380	

(Wilson et al. 2014). They also described a reduction in basal systemic haemoglobin 

levels in the mice bearing invasive tumours compared to the normal and hyperplasia 

bearing mice. Increases in SO2 and THb that were observed during hyperplasia and 

the malignant transformation are not recapitulated in our model, but consistent with 

our results they describe a decrease SO2 and THb during the in situ carcinoma and 

invasive disease. In addition, their ex-vivo analysis actually indicated increased 

vessel density in the invasive tumours, as we show here for the more aggressive 

MDA-MB-231 tumours compared to MCF-7.  

Both tumour types showed a pronounced rim-core effect, with more 

haemoglobin present in the rim of the tumours. MCF-7 tumours were similarly 390	
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oxygenated in both the rim and core, whereas MDA-MB-231 tumours had a poorly 

oxygenated tumour core.	 The rim-core effect in OT and histopathology data for MDA-

MB-231 observed here was consistent with previous work by Bar-Zion et al, where 

higher THb and SO2 values were shown in tumour rims (Bar-Zion et al, 2016).  

Comparing the vascular phenotype of these tumour models using 

immunohistochemistry, we found that while MDA-MB-231 tumours had a far higher 

microvessel density, but their vessels were poorly developed, with little pericyte 

coverage. These findings explain our OT image features, particularly the low 

oxygenation measured in MDA-MB-231 tumours, as vessels with low pericyte 

coverage lack vasoactivity and increased pericyte coverage has previously been 400	

linked to tumour oxygenation (S. Bohndiek et al. 2015). Furthermore, the similar OT 

haemoglobin signal between the tumour types indicates many of the vessels present 

in MDA-MB-231 tumours are likely to be non-functional.  

To understand the origins of the differing vascular phenotypes of these 

tumours, we examined their hypoxic and inflammatory phenotypes. The biochemical 

pattern shown by MCF-7 tumours, with high levels of VEGF and NO and positive 

expression of proteins involved in macrophage function, indicates activation of the 

angiogenic pathway and also the involvement of inflammation and/or endothelial 

cells. Conversely, MDA-MB-231 tumours appear less dependent on angiogenesis, 

with expression of human VE-cadherin measured in tumour extracts. They are also 410	

characterised by PAS+ blood vessels negative for CD31 expression, indicating 

vascular mimicry. Such features of vasculogenesis in these cell lines have previously 

been described in vitro (Cui et al. 2015) and our in vivo results in tumour tissue 

support their findings. However, the presence of a large number of CD31+ vessels in 

our MDA-MB-231 tumours may be considered unusual, as previous work suggests 

that vessels formed by vascular mimicry do not express this endothelial marker 

(Wagenblast et al. 2015). The presence of CD31+ vessels could be due to the co-
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existence of both vascular mimicry and angiogenesis, or due to vascular mimicry 

induced by macrophages, in which the presence of CD31+ cells has been recently 

described (Barnett et al. 2016). Nonetheless, the deficient structure of vessels arising 420	

from vascular mimicry would impair exchange of oxygen from haemoglobin, which 

may provide part of the explanation for differences in oxygenation measured with OT. 

To our knowledge, this is the first time that OT has been used in tumours presenting 

features of vascular mimicry and reinforces the potential application of OT to monitor 

vasculogenic processes in tumours (Soda et al. 2013; Weathers & De Groot 2014). 

Nonetheless, further experiments have to be performed to confirm whether OT can 

be more broadly applied to discriminate vascular mimicry and angiogenesis. 

There remain some key limitations to our study. Firstly, we examine an 

orthotopic xenograft model system using only two cell lines, representing oestrogen-

dependent and independent disease but there are other subtypes that are relevant 430	

for the disease. The absence of an adaptive immune system in the nude mice used 

for the study may also impact tumour development and the resulting vascular 

phenotype. Our findings should therefore be further verified in additional models, 

including transgenic or patient-derived tumour models, prior to being evaluated in a 

clinical setting. Secondly, we analyse only relative values of haemoglobin 

concentration and oxygenation, rather than absolute values. To derive absolute 

values would require compensation for differential attenuation of the full range of 

wavelengths used via light fluence correction of the OT data; application of light 

fluence correlation in vivo is the subject of current research (Brochu et al. 2015) but 

is not yet validated for routine use. As a result, only relative values were presented 440	

here. 

Clinical applications of OT in breast cancer appear promising compared to 

existing clinical imaging modalities, particularly when applied to dense breasts 

(Heijblom et al, 2015; Heijblom et al, 2016). Limitations with sensitivity and specificity 

remain, which may be influenced by the type of detector (hand held, frame with 
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compressing plates or cup shape) and the available wavelengths for imaging. Here, 

we confirmed that OT image data acquired in the wavelength range from 700 to 950 

nm to determine blood concentration and oxygenation reflects the underlying 

vascular phenotype of two breast tumour models, moving OT one step closer to 

validation as an imaging modality in breast cancer. Future studies will be needed to 450	

elucidate whether OT meets the clinical need for an accurate, fast and affordable tool 

to provide validated imaging biomarkers of tumour angiogenesis.  
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Main Text Figure Legends 

 

Figure 1: Optoacoustic tomography reveals oestrogen-independent 650	

MDA-MB-231 tumours have poorer oxygenation than oestrogen-

dependent MCF-7 tumours and healthy tissue. (A) Regions of interest 

(yellow outline) were drawn in the optoacoustic tomography slice at which the 

tumour area burden was highest. A region containing the aorta and inferior 

vena cava was used as a baseline reference in normal tissue. Representative 

images of tumors showing the spatial distribution of (B) tumour oxygenation 

(SO2
MSOT) and (C) total hemoglobin (THb). Quantification graphs are shown 

on the right, data were extracted from all regions of interest, showing a 

significantly higher oxygenation in MCF-7 compared to MDA-MB-231 (B) 

tumours and a decrease in THb (C). nMCF-7 =11; n231 =16, data expressed as 660	

mean±SEM. * p<0.05, **** p<0.0001. Statistical significance was assessed by 

paired 2-tailed t-test within a single tumour type and by unpaired 2-tailed t-test 

between tumour types.  
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Figure 2: Optoacoustic tomography provides a non-invasive 

assessment of the rim-core vascular phenotypes of both breast cancer 

models. (A) Rim data were taken from a region of interest drawn around the 670	

outside of the tumour, then shrunk by a radial distance of 1 mm. Significant 

differences in THb and SO2
MSOT were seen between the rim and core of MDA-

MB-231 tumours, though only THb showed a rim-core variation in MCF-7 

tumours (B,C). Extracting “large” (20-30 mm2 OT area) tumours for a size 

matched analysis (D) showed similar THb values but different   SO2
MSOT 

between rims and cores (E,F). Statistical significance was assessed by paired 

2-tailed t-test within a single tumour type and by unpaired 2-tailed t-test 

between tumour types. For (B) and (C) nMCF-7 = 11; n231 = 15, for (E) and (F) 

nMCF-7 and n231 = 4. All panels data expressed as mean±SEM. * p<0.05, ** 

p<0.01, *** p<0.001, **** p<0.0001. 680	
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Figure 3: MDA-MB-231 exhibit a high microvessel density but relatively 

poor maturity compared to MCF-7. (A) IHC representative micrographs for 

each tumour type stained with CD31 to mark endothelial cells and ASMA to 

mark the supporting pericyte layer (ASMA+ cells surrounding blood vessels). 

The lowest panel shows the mask used to count co-localised ASMA and 

CD31 staining on adjacent sections (orange overlap/ yellow CD31+ only) 690	

Arrowheads indicate CD31+ with no ASMA staining in MDA-MB-231. Scale 

bar = 30 µm. MDA-MB-231 tumours show increased overall CD31 staining (B) 

and microvessel density (MVD, C), but decreased vessel thickness (D) and 

ASMA coverage (E) compared to MCF-7. For B, C and D, nMCF-7=12 and 

n231=16. For E, nMCF-7=7 and n231=4. All panels, data expressed as 

mean±SEM. *** p<0.001, **** p<0.0001 by unpaired 2-tailed t-test. 

 

 

 

 700	
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Figure 4: The hypoxic and inflammatory phenotype differs between the 

two breast tumour models. MDA-MB-231 cells have a lower oxygen 

consumption rate (A) yet show higher hypoxia in tumours (B). VEGF staining 

is lower in MDA-MB-231 tumours (C). Serum mouse VEGF (mVEGF, D) and 

nitric oxide (NO, E) are also lower in MDA-MB-231 tumours. (F) MCF-7 show 

an inflammatory phenotype, with higher staining for iNOS and Arginase 

indicating the presence of type 1 and 2 macrophages respectively. Scale bars 

in (B) and (C) = 50 µm; (F) = 20 µm. For B) and C) nMCF-7=12 and n231=16. For 

D) and E) nMCF-7=6 and n231=9. All panels, data expressed as mean±SEM, 

*p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 by unpaired 2-tailed t-test. 710	
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Figure 5: Assessment of vascular mimicry. (A) Representative 

micrographs (magnification 20x) of tubular-like structures generated in 

matrigel 3D in vitro culture for MDA-MB-231 cells; no such structures are 

observed in MCF-7 cells. This phenotype is associated with vascular mimicry. 

(B) Representative micrographs (magnification 40x) of tumour sections 720	

stained with PAS and CD31. (C) All PAS-positive blood vessels were 

identified and the CD31 positivity of these blood vessels was then evaluated. 

The number of CD31+/PAS+ blood vessels was significantly lower in MDA-

MB-231 compared to MCF-7 tumours. (D) Western-blot for protein levels of 

VE-Cadherin in MCF-7 and MDA-MB-231 xenograft tumours ex vivo provided 

confirmation of these in vitro findings. GAPDH is shown as a house-keeping 

protein. (B) and (C) nMCF-7=6 and n231=6 data expressed as mean±SEM, 

*p<0.05 by unpaired 2-tailed t-test. (D) nMCF-7=8 and n231=15.  
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Supplementary Methods 

 

Cell lines 

In vitro experiments were performed when cells were between passage 20-25 for 

both MCF-7 and MDA-MB-231. Authentication using Genemapper ID v3.2.1 (Genetica) by 

STR Genotyping (1/2015) showed 100% match with the reference sequence in both cases. 

Cells were maintained in DMEM supplemented by 10% of FBS at 37ºC in 5% CO2. Oxygen 

consumption was measured using the MitoXpress Xtra Oxygen Consumption assay. 

 
MitoXpress Xtra Oxygen Consumption assay  
 

Oxygen consumption of the MCF-7 and MDA-MB-231 cells was assessed by the 

MitoXpress Xtra Oxygen Consumption (HS Method) assay (LuxCel Bioscience). Cells were 

seeded into a 96-well plate in 2 concentrations (50,000 and 100,000 cells/well, n=15) in 150 

µL of complete media. The next day MitoXpress Xtra was added to each well in fresh media 

following manufacturer instructions. Two drops of HS mineral oil were added to each well to 

prevent oxygen exchange. Positive and negative controls included 1 mg/mL of Glucose 

Oxidase, 1 µL of 150 µM Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) 

(Sigma Aldrich) solution and 1 µL of 150 µM Antimycin A respectively. Measures were taken 

at 37°C for 2.5 h in a plate reader (CLARIOstar, BMG Labtech) according to a protocol 

described elsewhere (Hynes et al, 2013). The slopes of fluorescent lifetime changes were 

extracted for each cell line and cell density were extracted as a quantification of the oxygen 

consumption in the well.  

A duplicate plate was used to quantify the relative cell densities in the wells. The 

plate without media was frozen at -80°C. After thawing 50 µL of TNE buffer (Tris 50 mM, 

NaCl 100mM and EDTA 0.1 mM) buffer with 20 µg/mL Hoechst 33342 was added to each 

well and incubated for 15 minutes at room temperature. The plate was scanned at 361 nm 

excitation and 497 nm emission (CLARIOstar, BMG Labtech) and the fluorescence signal 

intensity was used as a measure of the cell density. 
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Measurements of oxidative modification 

For blood nitration content, terminal blood collection was performed in heparinised 

tubes. Samples were centrifuged and diluted for quantification with Parameter™ Total Nitric 

Oxide (NO) and Nitrate/Nitrite Assay (R&D) following manufacturer’s instructions. The 

detection is based on the colorimetric detection of nitrite by the Griess Reaction. Optical 

densities at 540 nm (signal) and 690 nm (correction) were detected and the relative 

concentration of NO was extrapolated from a standard curve. 

For detection of the redox modified nucleotide 8-hydroxy-2’deoxyguanosine, we 

purified the DNA from paraffin embedded tumour tissue and detected the modification by 

ELISA. Briefly, DNA from 3-5 sections (5µm thickness) were extracted by using the 

PaxGene DNA kit (Qiagen) following the manufacturer’s instructions. For all the tumours 2 

µg of DNA were loaded into each well for the immunodetection using HT 8-oxo-dG ELISA kit 

II (Trevigen) following manufacturer’s instructions. 

Western-blot for nitrotyrosine and VE-cadherin 

Tissue was homogenised and lysed with Pierce® RIPA buffer (Thermo Scientific) 

plus Halt protease and phosphatase inhibitors cocktail (Thermo Scientific). Protein 

concentration was determined by using the Direct Detect system (Millipore) and 45 µg of 

protein was loaded for electrophoresis. Proteins were dry-transferred to a PDVF membrane 

using iBLOT2.0 system. For nitrotyrosine, all tumour samples were compared with an extract 

from MDA-MB-231 cells treated with peroxynitrite 10 µM (ONOO-) taken as a reference. 

Quantification was performed for the whole lane. For VE-Cadherin only presence- absence 

was assessed. GAPDH was used as house-keeping protein. Antibodies and conditions: Anti-

Nitrotyrosine (Cayman Chemical) (1:300), anti-VE-Cadherin (1:1000) and anti-GAPDH 

(1:5000) (both Cell Signalling Technologies) were incubated overnight at 4 °C. Secondary 

antibodies were anti-Rabbit IRDye® 680LT (LI-COR) and anti-Mouse IRDye® 680LT (both 

1:15000). Band intensity quantification was performed using Image J. For nitrotyrosine, all 

bands detectable from ~35 KDa to 100 KDa were measured and normalised against 

GAPDH. For VE-Cadherin, only the presence or absence of signal was counted. 
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Immunohistochemistry and special staining 

Tissues were collected and fixed in 4% PFA for 24h. Samples were processed by the 

Cancer Research UK Cambridge Institute Histopathology Core. Tumour tissues were 

embedded in paraffin, sectioned and rehydrated. Immunohistohemistry for CD31, alpha 

Smooth Muscle Actin (aSMA), oestrogen receptor (OR), Vascular Endothelial Growth Factor 

(VEGF) and Carbonic Anhydrase IX (CA-IX) was performed in a BOND automated stainer 

(Leica Biosystems) at the following concentrations 1:50, 1:500, 1:200, 1:250 and 1:1000. All 

the antibodies needed from antigen retrieval. Antigen retrieval was performed previous to 

primary antibody incubation as follows: Proteinase K 10’ at 37ºC for CD31, Tris-EDTA Heat 

shock for aSMA and Sodium Citrate heat shock for OE, VEGF and CA-IX. Toluidine blue for 

mast cells staining was performed following standard protocols. 

Immunohistochemistry for Arginase and inducible Nitric Oxide Synthase (iNOS both 

Abcam) was performed manually. Briefly, after deparaffination and rehydration slides 

underwent antigen retrieval (10 mM Citrate buffer, 20 min, 95 °C), samples were blocked for 

30 min using the Endogenous Blocking reagent (Dako). Primary antibodies anti-Arginase 

(1:200) and anti-iNOS (1:400) were diluted in 1% Cold Water Fish Skin gelatine in PBS and 

incubated for 40 minutes at room temperature. After serial washes (2x 5 min, PBS) the 

slides were incubated with the secondary anti-Rabbit+anti-Mouse HRP-conjugated solution 

(Dako) for 30 min. Di-amino-benzidine (DAB) was used as a substrate. 

For Periodic Acid Schiff (PAS) staining alone, slides rehydrated were incubated in α-

amilase for 30 min. After washing, slides were incubated in Acid Schiff for 5 min and 

subsequently in Schiff Reagent for another 15 min. Light Haematoxylin (40 s) was used as 

counterstain. Results are shown in Supplementary Figure 5. For Periodic Acid Schiff (PAS) 

staining with CD31, slides rehydrated were incubated in were incubated in Acid Schiff for 5 

min and subsequently in Schiff Reagent for another 15 min. Light Haematoxylin (40 s) was 

used as counterstain. When indicated, after PAS staining slides were treated with 

Proteinase K at 37 °C for 10 minutes and blocked with the endogenous blocking solution 
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(Dako) and incubated with CD31 (1:100). The secondary anti-Rabbit+anti-Mouse HRP-

conjugated solution (Dako) was incubated for 30 min. Di-amino-benzidine (DAB) was used 

as a substrate. 

 

Mouse and human VEGF inmunodetection in serum 

For mouse and human VEGF immunodetection (mVEGF and hVEGF respectively) 

Quantikine® ELISA kits (R&D) were used. Plasma samples were diluted 1:10 and 50 µl were 

used to quantify the concentration added per well. The procedure was carried out following 

manufacturers instructions. The colorimetric reaction was quantified at 450 nm. The final 

concentrations were extrapolated by correlation of the log of the O.D. with the log of the 

values in the standard curve.   
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Supplementary Figures 

 

Figure S1: Proliferation characteristics of MCF-7 and MDA-MB-231. (A) MCF-7 

tumours were studied up to 7 weeks post inoculation, after which mice had to be 

sacrificed due to side effects from the implanted oestrogen pellet. (B) MDA-MB-231 

tumours were studied up to 12 weeks post inoculation, after which mice were 

sacrificed due to ethical animal welfare limits. (C, D) Individual growth curves for 

both MCF-7 and MDA-MB-231 tumours. (E) H&E sections were used to identify the 

necrotic areas; a magnification of a field showing representative necrotic areas is 

shown (left) together with a quantification of the necrotic area (right). (F) Oestrogen 

receptor (OR) status was confirmed in MCF-7 tumours, with negligible oestrogen 

positive nuclei observed in MDA-MB-231 assessed by unpaired t-test. Assessment 

of tumour volume by calipers (as shown in A-D) was compared to assessment using 

the largest observable tumour area within a single optoacoustic tomography (OT) 

slice and showed a significant positive Pearson correlation for MCF-7 (G) and MDA-

MB-231 (H). For (A-D) nMCF-7 =11, for (E,F) nMCF-7=12. All panels n231=16, data 

expressed as mean±SEM. ** p<0.01, *** p<0.001, **** p<0.0001.  
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Figure S2: Optoacoustic tomography allows longitudinal monitoring of 

oxygenation and total haemoglobin. (A) The coefficient of variation (COV) was 

assessed for measurements of oxygen saturation (SO2
MSOT), total haemoglobin 

(THb), deoxyhaemoglobin (Hb) and oxyhaemoglobn (HbO2). Data were extracted 

from regions of interest placed over MCF-7 and MDA-MB-231 tumours, as well as 

from the reference area (Ref), in mice imaged repeatedly at 3 time points (0h, 24h, 

and 48h). COV values for MDA-MB-231 tumours are: 6.5±2.8% (SO2
MSOT), 

28.3±25.2% (THb), 51.7±22.6% (Hb) and 39.5±23.1% (HbO2). COV values for MCF-

7 tumours are: 5.0±1.6% (SO2
MSOT), 11.4±0.9% (THb), 17.8±4.5% (Hb) and 

15.5±3.5% (HbO2). COV values for the reference are: 3.1±1.8% (SO2
MSOT), 

10.1±3.4% (THb), 21.6±13.6% (Hb) and 8.8±3.9% (HbO2). (B) SO2
MSOT shown over 

the time course of the experiment. SO2
MSOT remains approximately constant in the 

MDA-MB-231 tumour region over time from study initiation, whereas a trend towards 

decreasing oxygenation is observed in MCF-7. (C) These trends remain when the 

oxygenation signal from the tumour (tum) is normalised to that extracted from the 

reference region around the aorta and inferior vena cava (ref). Normalisation was 

performed to ensure that any changes in systemic blood oxygenation were not 

affecting our results. (D) No significant change THb was observed across the time 

course. All panels data expressed as mean±SEM. * p<0.05, ** p<0.01, *** p<0.001, 

**** p<0.0001. (A) nMCF-7= 3, n231 = 4 and nreference = 3. (B) (C) and (D) nMCF-7 = 11 and 

n231 = 16. 
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Figure S3: Deoxyhaemoglobin (Hb) and oxyhaemoglobin (HbO2) signals used 

to compute total haemoglobin and oxygen saturation in the tumour rim and 

core. (A, B) Data pooled for all tumours that underwent OT. (C, D) Data from size 

matched comparison. (E) Rim and core analysis for SO2
MSOT during time, tumours 

were analysed after they were sufficiently large to enable a 1 mm radius region of 

interest to be drawn to denote the rim. Statistical significance was assessed by 

paired t-test within a single tumour type and by unpaired t-test between tumour 

types. For (A) and (B) and (E) nMCF-7 = 11; n231 = 15, for (C) and (D) nMCF-7 and n231 = 

4. All panels data expressed as mean±SEM. * p<0.05, ** p<0.01, *** p<0.001, **** 

p<0.0001. 
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Figure S4: Inflammatory and oxidative stress markers. (A) Representative image 

of nitrotyrosilation detection in tumour proteins by western-blot. GADPH was used as 

a housekeeping protein. (B) Relative quantification normalized against a protein 

extract of MDA-MB-231 cells treated with ONOO- at 10 µM. No significant difference 

was observed between the two models. (C) ELISA quantification of oxidative 

modification of DNA 8-oxo-dG in tumour tissue. (A) and (B) nMCF-7 = 8; n231 = 15. 

nMCF-7 = 10; n231 = 15).  
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Figure S5: Quantification of PAS and CD31 staining in adjacent sections. (A) 

Representative micrographs of MCF-7 and MDA-MB-231 tumours (magnification 

20x) stained with PAS and immunostained for CD31 in serial sections. Blood vessels 

were identified in PAS staining (yellow marks) and the corresponding region was 

located in the CD31 immunostaining. Blood vessels with positive (green) and 

negative (arrowhead) CD31 staining are marked. (B) Quantification of the CD31+ 

staining in blood vessels. nMCF-7=6 and n231=6 data expressed as mean±SEM, 

*p<0.05 by unpaired 2-tailed t-test.

 


