117 research outputs found

    Interaction features for prediction of perceptual segmentation:Effects of musicianship and experimental task

    Get PDF
    As music unfolds in time, structure is recognised and understood by listeners, regardless of their level of musical expertise. A number of studies have found spectral and tonal changes to quite successfully model boundaries between structural sections. However, the effects of musical expertise and experimental task on computational modelling of structure are not yet well understood. These issues need to be addressed to better understand how listeners perceive the structure of music and to improve automatic segmentation algorithms. In this study, computational prediction of segmentation by listeners was investigated for six musical stimuli via a real-time task and an annotation (non real-time) task. The proposed approach involved computation of novelty curve interaction features and a prediction model of perceptual segmentation boundary density. We found that, compared to non-musicians’, musicians’ segmentation yielded lower prediction rates, and involved more features for prediction, particularly more interaction features; also non-musicians required a larger time shift for optimal segmentation modelling. Prediction of the annotation task exhibited higher rates, and involved more musical features than for the real-time task; in addition, the real-time task required time shifting of the segmentation data for its optimal modelling. We also found that annotation task models that were weighted according to boundary strength ratings exhibited improvements in segmentation prediction rates and involved more interaction features. In sum, musical training and experimental task seem to have an impact on prediction rates and on musical features involved in novelty-based segmentation models. Musical training is associated with higher presence of schematic knowledge, attention to more dimensions of musical change and more levels of the structural hierarchy, and higher speed of musical structure processing. Real-time segmentation is linked with higher response delays, less levels of structural hierarchy attended and higher data noisiness than annotation segmentation. In addition, boundary strength weighting of density was associated with more emphasis given to stark musical changes and to clearer representation of a hierarchy involving high-dimensional musical changes.peerReviewe

    Naturalistic music and dance : Cortical phase synchrony in musicians and dancers

    Get PDF
    Expertise in music has been investigated for decades and the results have been applied not only in composition, performance and music education, but also in understanding brain plasticity in a larger context. Several studies have revealed a strong connection between auditory and motor processes and listening to and performing music, and music imagination. Recently, as a logical next step in music and movement, the cognitive and affective neuro-sciences have been directed towards expertise in dance. To understand the versatile and overlapping processes during artistic stimuli, such as music and dance, it is necessary to study them with continuous naturalistic stimuli. Thus, we used long excerpts from the contemporary dance piece Carmen presented with and without music to professional dancers, musicians, and laymen in an EEG laboratory. We were interested in the cortical phase synchrony within each participant group over several frequency bands during uni- and multimodal processing. Dancers had strengthened theta and gamma synchrony during music relative to silence and silent dance, whereas the presence of music decreased systematically the alpha and beta synchrony in musicians. Laymen were the only group of participants with significant results related to dance. Future studies are required to understand whether these results are related to some other factor (such as familiarity to the stimuli), or if our results reveal a new point of view to dance observation and expertise.Peer reviewe

    Redefining groove

    Get PDF

    Diffusion map for clustering fMRI spatial maps extracted by independent component analysis

    Full text link
    Functional magnetic resonance imaging (fMRI) produces data about activity inside the brain, from which spatial maps can be extracted by independent component analysis (ICA). In datasets, there are n spatial maps that contain p voxels. The number of voxels is very high compared to the number of analyzed spatial maps. Clustering of the spatial maps is usually based on correlation matrices. This usually works well, although such a similarity matrix inherently can explain only a certain amount of the total variance contained in the high-dimensional data where n is relatively small but p is large. For high-dimensional space, it is reasonable to perform dimensionality reduction before clustering. In this research, we used the recently developed diffusion map for dimensionality reduction in conjunction with spectral clustering. This research revealed that the diffusion map based clustering worked as well as the more traditional methods, and produced more compact clusters when needed.Comment: 6 pages. 8 figures. Copyright (c) 2013 IEEE. Published at 2013 IEEE International Workshop on Machine Learning for Signal Processin

    Musical training predicts cerebello-hippocampal coupling during music listening.

    Get PDF
    Cerebello-hippocampal interactions occur during accurate spatiotemporal prediction of movements. In the context of music listening, differences in cerebello-hippocampal functional connectivity may result from differences in predictive listening accuracy. Using functional MRI, we studied differences in this network between 18 musicians and 18 nonmusicians while they listened to music. Musicians possess a predictive listening advantage over nonmusicians, facilitated by strengthened coupling between produced and heard sounds through lifelong musical experience. Thus, we hypothesized that musicians would exhibit greater functional connectivity than nonmusicians as a marker of accurate online predictions during music listening. To this end, we estimated the functional connectivity between cerebellum and hippocampus as modulated by a perceptual measure of the predictability of the music. Results revealed increased predictability-driven functional connectivity in this network in musicians compared with nonmusicians, which was positively correlated with the length of musical training. Findings may be explained by musicians’ improved predictive listening accuracy. Our findings advance the understanding of cerebellar integrative function.Peer reviewe

    Fractionating auditory priors : A neural dissociation between active and passive experience of musical sounds

    Get PDF
    Learning, attention and action play a crucial role in determining how stimulus predictions are formed, stored, and updated. Years-long experience with the specific repertoires of sounds of one or more musical styles is what characterizes professional musicians. Here we contrasted active experience with sounds, namely long-lasting motor practice, theoretical study and engaged listening to the acoustic features characterizing a musical style of choice in professional musicians with mainly passive experience of sounds in laypersons. We hypothesized that long-term active experience of sounds would influence the neural predictions of the stylistic features in professional musicians in a distinct way from the mainly passive experience of sounds in laypersons. Participants with different musical backgrounds were recruited: professional jazz and classical musicians, amateur musicians and non-musicians. They were presented with a musical multi-feature paradigm eliciting mismatch negativity (MMN), a prediction error signal to changes in six sound features for only 12 minutes of electroencephalography (EEG) and magnetoencephalography (MEG) recordings. We observed a generally larger MMN amplitudes-indicative of stronger automatic neural signals to violated priors-in jazz musicians (but not in classical musicians) as compared to non-musicians and amateurs. The specific MMN enhancements were found for spectral features (timbre, pitch, slide) and sound intensity. In participants who were not musicians, the higher preference for jazz music was associated with reduced MMN to pitch slide (a feature common in jazz music style). Our results suggest that long-lasting, active experience of a musical style is associated with accurate neural priors for the sound features of the preferred style, in contrast to passive listening.Peer reviewe

    Altered EEG Oscillatory Brain Networks During Music-Listening in Major Depression

    Get PDF
    To examine the electrophysiological underpinnings of the functional networks involved in music listening, previous approaches based on spatial independent component analysis (ICA) have recently been used to ongoing electroencephalography (EEG) and magnetoencephalography (MEG). However, those studies focused on healthy subjects, and failed to examine the group-level comparisons during music listening. Here, we combined group-level spatial Fourier ICA with acoustic feature extraction, to enable group comparisons in frequency-specific brain networks of musical feature processing. It was then applied to healthy subjects and subjects with major depressive disorder (MDD). The music-induced oscillatory brain patterns were determined by permutation correlation analysis between individual time courses of Fourier-ICA components and musical features. We found that (1) three components, including a beta sensorimotor network, a beta auditory network and an alpha medial visual network, were involved in music processing among most healthy subjects; and that (2) one alpha lateral component located in the left angular gyrus was engaged in music perception in most individuals with MDD. The proposed method allowed the statistical group comparison, and we found that: (1) the alpha lateral component was activated more strongly in healthy subjects than in the MDD individuals, and that (2) the derived frequency-dependent networks of musical feature processing seemed to be altered in MDD participants compared to healthy subjects. The proposed pipeline appears to be valuable for studying disrupted brain oscillations in psychiatric disorders during naturalistic paradigms.Peer reviewe

    Exploring Frequency-Dependent Brain Networks from Ongoing EEG Using Spatial ICA During Music Listening

    Get PDF
    Recently, exploring brain activity based on functional networks during naturalistic stimuli especially music and video represents an attractive challenge because of the low signal-to-noise ratio in collected brain data. Although most efforts focusing on exploring the listening brain have been made through functional magnetic resonance imaging (fMRI), sensor-level electro- or magnetoencephalography (EEG/MEG) technique, little is known about how neural rhythms are involved in the brain network activity under naturalistic stimuli. This study exploited cortical oscillations through analysis of ongoing EEG and musical feature during freely listening to music. We used a data-driven method that combined music information retrieval with spatial Fourier Independent Components Analysis (spatial Fourier-ICA) to probe the interplay between the spatial profiles and the spectral patterns of the brain network emerging from music listening. Correlation analysis was performed between time courses of brain networks extracted from EEG data and musical feature time series extracted from music stimuli to derive the musical feature related oscillatory patterns in the listening brain. We found brain networks of musical feature processing were frequency-dependent. Musical feature time series, especially fluctuation centroid and key feature, were associated with an increased beta activation in the bilateral superior temporal gyrus. An increased alpha oscillation in the bilateral occipital cortex emerged during music listening, which was consistent with alpha functional suppression hypothesis in task-irrelevant regions. We also observed an increased delta-beta oscillatory activity in the prefrontal cortex associated with musical feature processing. In addition to these findings, the proposed method seems valuable for characterizing the large-scale frequency-dependent brain activity engaged in musical feature processing.Peer reviewe
    corecore