11 research outputs found

    Antiviral activity of chitosan nanoparticles for controlling plant-infecting viruses

    Get PDF
    Chitosan nanoparticles (ChiNPs) are a potentially effective means for controlling numerous plant diseases. This study firstly describes the antiviral capabilities of ChiNPs to control plant viral diseases compared to its bulk form. Bean yellow mosaic virus (BYMV) was used as a model plant virus affecting faba bean plants and many other legumes. The antiviral effectiveness of ChiNPs and chitosan were evaluated as a curative application method, using six dosage rates (50, 100, 200, 250, 300 and 400 mg/L). Results indicated that ChiNPs curatively applied 48 h post virus inoculation entirely inhibit the disease infectivity and viral accumulation content at 300 mg/L and 400 mg/L. The virus titre was greatly alleviated within the plant tissues by 7.71% up to100% depending on ChiNP dosage rates. However, chitosan used in its bulk-based material form revealed a relatively low to an intermediate reduction in virus infectivity by 6.67% up to 48.86%. Interestingly, ChiNPs affect the virus particle’s integrity by producing defective and incomplete BYMV viral particles, defeating their replication and accumulation content within the plant tissues. Simultaneously, ChiNP applications were appreciably shown to promote the pathogenesis-related (PR-1) gene and other defence-related factors. The mRNA of the PR-1 gene was markedly accumulated in treated plants, reaching its maximum at 400 mg/L with 16.22-fold relative expression change over the untreated control. Further, the total phenol dynamic curve was remarkably promoted for 30 days in response to ChiNP application, as compared to the untreated control. Our results provide the first report that chitosan-based nanomaterials have a superior effect in controlling plant viruses as an antiviral curing agent, suggesting that they may feasibly be involved in viral disease management strategies under field conditions without serious health concerns and environmental costs. Significance: ‱ Our findings show that chitosan nanoparticles have a powerful curing antiviral activity against BYMV disease. These findings open the door for the use of eco-friendly nano-based tools in controlling numerous plant viruses. The use of eco-friendly nano-based materials could result in a successful integrative control strategy for plant viruses under field conditions, negating the need for the conventional measure used to control most of the insect-transmitted plant viruses, that is insecticide application against vector insects

    Antiviral activity of chitosan nanoparticles for controlling plant-infecting viruses

    Get PDF
    Chitosan nanoparticles (ChiNPs) are a potentially effective means for controlling numerous plant diseases. This study firstly describes the antiviral capabilities of ChiNPs to control plant viral diseases compared to its bulk form. Bean yellow mosaic virus (BYMV) was used as a model plant virus affecting faba bean plants and many other legumes. The antiviral effectiveness of ChiNPs and chitosan were evaluated as a curative application method, using six dosage rates (50, 100, 200, 250, 300 and 400 mg/L). Results indicated that ChiNPs curatively applied 48 h post virus inoculation entirely inhibit the disease infectivity and viral accumulation content at 300 mg/L and 400 mg/L. The virus titre was greatly alleviated within the plant tissues by 7.71% up to100% depending on ChiNP dosage rates. However, chitosan used in its bulk-based material form revealed a relatively low to an intermediate reduction in virus infectivity by 6.67% up to 48.86%. Interestingly, ChiNPs affect the virus particle’s integrity by producing defective and incomplete BYMV viral particles, defeating their replication and accumulation content within the plant tissues. Simultaneously, ChiNP applications were appreciably shown to promote the pathogenesis-related (PR-1) gene and other defence-related factors. The mRNA of the PR-1 gene was markedly accumulated in treated plants, reaching its maximum at 400 mg/L with 16.22-fold relative expression change over the untreated control. Further, the total phenol dynamic curve was remarkably promoted for 30 days in response to ChiNP application, as compared to the untreated control. Our results provide the first report that chitosan-based nanomaterials have a superior effect in controlling plant viruses as an antiviral curing agent, suggesting that they may feasibly be involved in viral disease management strategies under field conditions without serious health concerns and environmental costs.Significance: Our findings show that chitosan nanoparticles have a powerful curing antiviral activity against BYMV disease. These findings open the door for the use of eco-friendly nano-based tools in controlling numerous plant viruses. The use of eco-friendly nano-based materials could result in a successful integrative control strategy for plant viruses under field conditions, negating the need for the conventional measure used to control most of the insect-transmitted plant viruses, that is insecticide application against vector insects

    Short-term evaluation of motor and sensory nerve conduction parameters in COVID-19-associated peripheral neuropathy patients

    No full text
    Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS‐COV‐2) is mostly associated with upper and lower respiratory tract manifestations. However, coronavirus disease 19 (COVID-19) can result in a wide range of other systemic symptomatology, including neuropsychiatric, psychological, and psychosocial impairments. Literature regarding neurological compromise, including neuropathy and sensory and motor affection associated with COVID-19, is still limited. This study aims to evaluate the sensory, motor neuropathy, and secondary neurological impairment among patients with mild to moderate coronavirus disease associated with peripheral neuropathy within 1 month. Methods Forty participants, including 20 mild to moderate COVID-19 patients with peripheral neuropathy and 20 age and gender-matched healthy volunteers, were recruited in this case/control study. Laboratory evaluation focused on C-reactive protein (CRP) and D-dimer levels. Oxygen saturation for all participants was recorded. The neurophysiological study included motor nerve study, sensory nerve study, and F wave study for upper and lower limbs were done. Results The two groups were similar regarding baseline data. Neurological symptoms’ onset in the COVID-19 group ranged from 4 to 24 days. Levels of CRP and D-dimer levels were significantly higher in patients versus the control group. Motor nerve conduction (MNC) amplitude and latency for the median nerve were significantly compromised among the COVID-19 group. The MNC latency and F wave latency for the posterior tibial nerve were significantly higher in the COVID-19 group. The CRP and D-dimer levels were associated with a significant positive correlation with a latency of median nerve MNC, sensory nerve conduction (SNC), and f-wave; latency of MNC and F wave of the posterior tibial nerve; and SNC latency for sural nerve. Conclusion neurological involvement can occur in mild to moderate cases of SARS-COV-2 infection and add to the burden of the disease. Neurological symptoms in the course of COVID-19 disease should be interpreted cautiously, and appropriate diagnosis, including nerve conduction studies and management, should be considered. Trial registration ClinicalTrials.gov. NCT05721040

    Cisplatin-induced azoospermia and testicular damage ameliorated by adipose-derived mesenchymal stem cells

    No full text
    Abstract Background The testes are highly susceptible to the adverse effects of chemotherapy and radiation at all stages of life. Exposure to these threats mainly occurs during cancer treatment and as an occupational hazard in radiation centers. The present study investigated the regenerative ability of adipose-derived mesenchymal stem cells (ADMSCs) against the adverse effects of cisplatin on the structure and function of the testes. Methods New Zealand white rabbits (N = 15) were divided into three groups of five: a negative control group (no treatment), a cisplatin group (single dose of cisplatin into each testis followed three days later by a PBS injection), and a cisplatin + ADMSCs group (cisplatin injection followed three days later by an ADMSC injection). On day 45 post-treatment, serum testosterone levels were evaluated, and the testes and epididymis were collected for histology, oxidative stress examination, and epididymal sperm analysis. Results Cisplatin caused damage to the testicular tissue and decreased serum testosterone levels, epididymal sperm counts, and oxidants. An antioxidant imbalance was detected due to increasing malondialdehyde (MDA) and reduced glutathione (GSH) levels in testicular tissue. The ADMSC-treated group displayed a moderate epididymal sperm count, adequate antioxidant protection, suitable hormone levels, and enhanced testicular tissue morphology. Conclusions ADMSCs treatment repaired damaged testicular tissue, enhanced biochemical parameters, and modified pathological changes caused by cisplatin

    Anatase-cellulose acetate for reinforced desalination membrane with antibacterial properties

    No full text
    Abstract This study aimed to prepare antifouling and highly mechanical strengthening membranes for brackish and underground water desalination. It was designed from cellulose acetate (CA) loaded anatase. Anatase was prepared from tetra-iso-propylorthotitanate and carboxymethyl cellulose. Different concentrations of anatase (0.2, 0.3, 0.5, 0.6, 0.7, and 0.8)% were loaded onto CA during the inversion phase preparation of the membranes. The prepared membranes were characterized using Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM & EDX), mechanical properties, swelling ratio, porosity determination, and ion release. The analysis confirmed the formation of anatase on the surface and inside the macro-voids of the membrane. Furthermore, anatase loading improved the CA membrane’s mechanical properties and decreased its swelling and porosity rate. Also, CA-loaded anatase membranes displayed a significant antibacterial potential against Gram-positive and Gram-negative bacteria. The results showed that the salt rejection of the CA/anatase films as-prepared varies considerably with the addition of nanomaterial, rising from 46%:92% with the prepared membranes under the 10-bar operation condition and 5 g/L NaCl input concentration. It can be concluded that the prepared CA-loaded anatase membranes have high mechanical properties that are safe, economical, available, and can stop membrane biofouling

    Biological Control of Tomato Bacterial Leaf Spots and Its Impact on Some Antioxidant Enzymes, Phenolic Compounds, and Pigment Content

    No full text
    Tomato bacterial spots, caused by Xanthomonas campestris pv. vesicatoria (Xcv1) and X. euvesicatoria (Xe2), as well as bacterial specks, caused by two strains of Pseudomonas syringae pv. tomato (Pst1 and Pst2), represent significant threats to tomato production in the El-Sharkia governorate, often resulting in substantial yield losses. The objective of this study was to evaluate the efficacy of various biocontrol culture filtrates, including bacteria and fungi agents, in managing the occurrence and severity of these diseases, while also monitoring physiological changes in tomato leaves, including antioxidant enzymes, phenolics, and pigment content. The culture filtrates from examined Trichoderma species (T. viride, T. harzianum, and T. album), as well as the tested bacteria (Bacillus subtilis, Pseudomonas fluorescens, and Serratia marcescens) at concentrations of 25%, 50%, and 100%, significantly inhibited the proliferation of pathogenic bacteria In vitro. For the In vivo experiments, we used specific doses of 5 mL of spore suspension per plant for the fungal bioagents at a concentration of 2.5 × 107 spores/mL. The bacterial bioagents were applied as a 10 mL suspension per plant at a concentration of 1 × 108 CFU/mL. Spraying the culture filtrates of the tested bioagents two days before infection In vivo significantly reduced disease incidence and severity. Trichoderma viride exhibited the highest efficacy among the fungal bioagents, followed by T. harzianum and T. album. Meanwhile, the culture filtrate of B. subtilis emerged as the most potent among the bacterial bioagents, followed by P. fluorescens. Furthermore, applying these culture filtrates resulted in elevated levels of chitinase, peroxidase, and polyphenol oxidase activity. This effect extended to increased phenol contents, as well as chlorophyll a, chlorophyll b, and carotenoids in sprayed tomato plants compared to the control treatment. Overall, these findings underscore the potential of these biocontrol strategies to effectively mitigate disease incidence and severity while enhancing plant defense mechanisms and physiological parameters, thus offering promising avenues for sustainable disease management in tomato production

    Spectrum of epilepsy – prevalence, impact, and treatment gap: an epidemiological study from Al-Quseir, Egypt

    No full text
    Hamdy N El-Tallawy,1 Wafaa M Farghaly,1 Tarek A Rageh,1 Ghaydaa A Shehata,1 Nabil A Metwally,2 Reda Badry,1 Mohammed A Sayed,3 Ahmed M Abdelwarith,2 Mahmoud R Kandil,1 Mohamed A Hamed,1 Khaled O Mohamed,1 Amal M Tohamy11Department of Neurology, Assiut University, Assiut, 2Department of Neurology, Faculty of Medicine, Al-Azhar University – Assiut Branch, Assiut, 3Department of Neurology, Sohag University, Sohag, EgyptBackground: Epidemiology continues to be an important research tool in the study of epilepsy and related disorders, providing a better understanding of the frequency, causes, and natural history of the disorder.Objective: To estimate the prevalence of epilepsy in Al-Quseir, Red Sea Governorate, Egypt, and its magnitude of treatment gap.Methods: The study was part of a door-to-door study, including every door, to screen all inhabitants in Al-Quseir (33,818 inhabitants) by three specialists of neurology and 15 female social workers (for demographic data collection) using a standardized screening questionnaire. All suspected cases were subjected to detailed history, clinical examination, and electroencephalogram. Neuroimaging studies and estimation of serum drug level were done in select cases if needed.Results: The study revealed that the lifetime prevalence rate of epilepsy in Al-Quseir is 5.5/1,000, with the highest peak during early childhood, while that of active epilepsy is 3.3/1,000 population. The annual incidence rate is 48/100,000, and the age-specific incidence rate has a U-shaped pattern with two peaks of incidence in early infancy and elderly life. Localization-related epilepsy is the most frequently encountered type (58.8%). The treatment gap of epilepsy in Al-Quseir is 83.8%.Conclusion: The lifetime prevalence of epilepsy in Al-Quseir city, Red Sea Governorate, was 5.5/1000. Keywords: epidemiology, epilepsy, treatment gap, Egypt, Al-Quseir, epidemiolog

    Effects of Virtual Reality Exercises versus Isokinetic Exercises in comparison with Conventional Exercises on the Imaging Findings and Inflammatory Biomarker Changes in Soccer Players with Non-Specific Low Back Pain: A Randomized Controlled Trial

    No full text
    Chronic non-specific low back pain (CNLBP) is the most common musculoskeletal problem. The purpose of this study was to investigate the effects of advanced physiotherapeutic exercise programs on imaging findings and inflammatory biomarkers in soccer players with CNLBP. In total, 60 CNLBP participants were divided into virtual reality exercise (VRE; n = 20), isokinetic exercise (IKE; n = 20), and conventional exercise (n = 20) groups. Pain intensity, imaging findings (muscle cross-sectional area (CSA) and muscle thickness), and changes in inflammatory biomarkers (CRP, TNF-α, IL-2, IL-4, and IL-6) were measured at baseline and after four weeks. After four weeks of intervention, there was a significant improvement (p = 0.001) in pain intensity for the VRE vs. IKE (0.7; CI 95% 0.38 to 1.07) and VRE vs. conventional (3.0 CI 95% 2.68 to 3.31) groups. The IKE group showed a greater number of significant changes in muscle CSA and muscle thickness than the other two groups (p < 0.001). Moreover, the VRE group showed significant improvement in inflammatory biomarker measures compared with the other two groups (p < 0.001). In CNLBP, virtual and isokinetic exercises had equal effects on reducing pain intensity. Isokinetic exercise is beneficial in increasing the muscle CSA and thickness, and virtual exercises are helpful for attenuating the inflammation process in soccer players with CNLBP

    Sentinel behaviour and the watchman\'s call in the Chukar at St Katherine Protectorate, Sinai, Egypt

    No full text
    Foraging in a group potentially allows individuals to reduce anti-predator vigilance without increasing predation risk. Individual vigilance may be further reduced if group members take turns at watching for predators, acting as sentinels or guards. Because the presence or absence of sentinels must be monitored to ensure that the group is guarded at all times, the conditions favouring the evolution of coordinated vigilance are probably very specific. We studied groups of chukars, Alectoris chukar (Gray, 1830) (Phasianidae), a desert species reported to adopt a sentinel system, to see whether this was the case. Individuals identified as sentinels behaved significantly differently from other group members, occupying prominent positions and being vigilant significantly more than foraging group members. The largest individuals became sentinels most frequently, yet were not more vigilant than smaller individuals while they were on guard. Sentinels that ended a bout of vigilance were usually replaced quickly; a soft call was heard during a significant number of exchanges. We conclude that chukars do have a sentinel system of vigilance. A vocalisation, similar to the watchman\'s call seen in other species, seems to play a role in coordinating vigilance behaviour. Keywords: anti-predator vigilance, flocking, Egyptian Journal of Biology Vol. 10 2008: pp. 42-5

    Whole exome sequencing as a diagnostic tool for patients with ciliopathy-like phenotypes

    No full text
    Ciliopathies are a group of rare disorders characterized by a high genetic and phenotypic variability, which complicates their molecular diagnosis. Hence the need to use the latest powerful approaches to faster identify the genetic defect in these patients. We applied whole exome sequencing to six consanguineous families clinically diagnosed with ciliopathy-like disease, and for which mutations in predominant Bardet-Biedl syndrome (BBS) genes had previously been excluded. Our strategy, based on first applying several filters to ciliary variants and using many of the bioinformatics tools available, allowed us to identify causal mutations in BBS2, ALMS1 and CRB1 genes in four families, thus confirming the molecular diagnosis of ciliopathy. In the remaining two families, after first rejecting the presence of pathogenic variants in common cilia-related genes, we adopted a new filtering strategy combined with prioritisation tools to rank the final candidate genes for each case. Thus, we propose CORO2B, LMO7 and ZNF17 as novel candidate ciliary genes, but further functional studies will be needed to confirm their role. Our data show the usefulness of this strategy to diagnose patients with unclear phenotypes, and therefore the success of applying such technologies to achieve a rapid and reliable molecular diagnosis, improving genetic counselling for these patients. In addition, the described pipeline also highlights the common pitfalls associated to the large volume of data we have to face and the difficulty of assigning a functional role to these changes, hence the importance of designing the most appropriate strategy according to each case
    corecore