270 research outputs found

    Analysis of oxy-coal combustion through measurements in a pilot-scale entrained flow reactor

    Get PDF
    Coal combustion is investigated in both air and oxy-fuel conditions in a pilot-scale entrained flow reactor able to provide high temperatures, heating rates and residence times. Measurements are carried out with different levels of complexity and are aimed at: assessing the thermal field inside the reactor; evaluating conversions of devolatilization or char combustion tests; identifying phenomena such as volatiles ignition and measuring the ignition delay time. Computational Fluid Dynamics was also used in order to provide a better understanding of the experimental evidences. Among the results, the ignition delay time was found to be larger in oxy-fuel conditions than in air, mainly because of the larger specific heat of the oxy-fuel environment. The proposed investigation may help the qualification of advanced experimental apparatus as entrained flow reactors, with the purpose to make them suitable for heterogeneous kinetics studies in oxy-fuel conditions

    Woodchip size effect on combustion temperatures and volatiles in a small-scale fixed bed biomass boiler

    Get PDF
    Biomass combustion performance is greatly affected by the particle size distribution, which influences heat and mass transport phenomena. The present work investigates the effect of woodchip size distribution on combustion in a 140 kW underfeed stoker boiler. Three different fuel sizes were prepared, and their combustion performance was measured by monitoring temperatures inside and above the fire pit and the gas composition above the fuel bed. The gas composition was then correlated to the particle mean diameter. Although minor effects could be detected in the temperature and composition of the flue gases, a more uniform spatial distribution of volatiles was observed when employing bigger woodchips. The present results can improve the understanding of the impact of fuel size on the performance of woodchip-fired boilers and can be valuably used for numerical model validation

    PM2.5 Size Distribution and Characterization by Carbon Isotope in Tuscany (Italy)

    Get PDF
    This study is focused on the numerical distribution and isotopic description of PM2.5 developed within the PATOS II (Particolato Atmosferico TOScana) regional project about the characterization and source apportionment of atmospheric aerosol (PM2.5) in Tuscany. PM isotopic analysis can play an important role in the individuation of primary and secondary sources and also in the determination of the natural/biogenic or anthropogenic/combustion contribution to the measured concentration. In addition, the PM2.5 particle number concentrations and the relative contribution of ultrafine particles are interpreted to identify the emission sources, the main atmospheric processes and the factors related with the dispersion of atmospheric pollutants. The analytical results in term of δ13C parameter show a greater variability in the urban and suburban background sites than in the urban traffic site, where the δ13C parameter does not vary significantly: this could be strictly correlated with traffic emissions and independently from the total particles number. On the contrary, urban and suburban background sites are affected by the meteorology and atmospheric processes. For this reason we can observe a wider variability in the δ13C values due to the contribution of different emissions sources. Despite all, in urban background we can observe lower δ13C values related with high number of total particles; this effect could be related with a traffic emission transport, because the δ13C parameter is similar to the δ13C value of urban traffic site

    PM Characterization by Carbon Isotope

    Get PDF

    An Experimental Investigation on the Effect of Exhaust Gas Recirculation in a Small-Scale Fixed Bed Biomass Boiler

    Get PDF
    Exhaust gas recirculation is a technique that allows for controlling the combustion chamber temperature and reducing the NOx and particle matter emissions. Moreover, it helps to mitigate soot formation and ash agglomeration in combustion systems. The present study investigated the effect of exhaust gas recirculation on combustion temperatures of a 140 kW underfed stoker biomass boiler. To this purpose, a wide range of operating conditions were used, collecting data regarding flue gas and fixed bed temperatures. It turned out that the recirculating ratio has a significant effect on the temperatures in the primary combustion zone, affecting the thermal gradient and the main thermal zones of the biomass combusting bed. The obtained results can be useful for lumped parameter modeling, or CFD validation purposes

    Evaluation of mussel shells powder as reinforcement for pla-based biocomposites

    Get PDF
    The use of biopolyesters, as polymeric matrices, and natural fillers derived from wastes or by-products of food production to achieve biocomposites is nowadays a reality. The present paper aims to valorize mussel shells, 95% made of calcium carbonate (CaCO3 ), converting them into high-value added products. The objective of this work was to verify if CaCO3, obtained from Mediterranean Sea mussel shells, can be used as filler for a compostable matrix made of Polylactic acid (PLA) and Poly(butylene adipate-co-terephthalate) (PBAT). Thermal, mechanical, morphological and physical properties of these biocomposites were evaluated, and the micromechanical mechanism controlling stiffness and strength was investigated by analytical predictive models. The performances of these biocomposites were comparable with those of biocomposites produced with standard calcium carbonate. Thus, the present study has proved that the utilization of a waste, such as mussel shell, can become a resource for biocomposites production, and can be an effective option for further industrial scale-up

    Optimally Managing Chemical Plant Operations: An Example Oriented by Industry 4.0 Paradigms

    Get PDF
    Updating industrial facilities to increase the level of automation and digitalization to match Industry 4.0 paradigms has become essential for many companies. Following such a trend, this paper presents a real-time optimization algorithm that plays a central role in a larger project framework devoted to highly interconnecting different network components of an Italian chemical industrial site. The proposed methodology aims at best managing the production rates of various products to fulfill a sales plan organized to satisfy numerous client requests. The considered model takes into account both batch and continuous processes as well as salable and non-storable products. The algorithm structure relies on the use of a non-linear optimization scheme and on the concepts of batch scheduling. Different features of the proposed methodology have been tested on real plant data, showing how the predicted forecast always improved the initial operation plan by considering both aspects of feasibility and economic nature. The use of the proposed algorithm assures the basis for fully integrating the control systems and the selling department of the facility in a more interactive and responsive manner

    A new world malaria map: Plasmodium falciparum endemicity in 2010

    Get PDF
    Background: transmission intensity affects almost all aspects of malaria epidemiology and the impact of malaria on human populations. Maps of transmission intensity are necessary to identify populations at different levels of risk and to evaluate objectively options for disease control. To remain relevant operationally, such maps must be updated frequently. Following the first global effort to map Plasmodium falciparum malaria endemicity in 2007, this paper describes the generation of a new world map for the year 2010. This analysis is extended to provide the first global estimates of two other metrics of transmission intensity for P. falciparum that underpin contemporary questions in malaria control: the entomological inoculation rate (PfEIR) and the basic reproductive number (PfR). Methods: annual parasite incidence data for 13,449 administrative units in 43 endemic countries were sourced to define the spatial limits of P. falciparum transmission in 2010 and 22,212 P. falciparum parasite rate (PfPR) surveys were used in a model-based geostatistical (MBG) prediction to create a continuous contemporary surface of malaria endemicity within these limits. A suite of transmission models were developed that link PfPR to PfEIR and PfR and these were fitted to field data. These models were combined with the PfPR map to create new global predictions of PfEIR and PfR. All output maps included measured uncertainty. Results: an estimated 1.13 and 1.44 billion people worldwide were at risk of unstable and stable P. falciparum malaria, respectively. The majority of the endemic world was predicted with a median PfEIR of less than one and a median PfRc of less than two. Values of either metric exceeding 10 were almost exclusive to Africa. The uncertainty described in both PfEIR and PfR was substantial in regions of intense transmission. Conclusions: the year 2010 has a particular significance as an evaluation milestone for malaria global health policy. The maps presented here contribute to a rational basis for control and elimination decisions and can serve as a baseline assessment as the global health community looks ahead to the next series of milestones targeted at 20

    A Genome-Wide Association Scan on the Levels of Markers of Inflammation in Sardinians Reveals Associations That Underpin Its Complex Regulation

    Get PDF
    Identifying the genes that influence levels of pro-inflammatory molecules can help to elucidate the mechanisms underlying this process. We first conducted a two-stage genome-wide association scan (GWAS) for the key inflammatory biomarkers Interleukin-6 (IL-6), the general measure of inflammation erythrocyte sedimentation rate (ESR), monocyte chemotactic protein-1 (MCP-1), and high-sensitivity C-reactive protein (hsCRP) in a large cohort of individuals from the founder population of Sardinia. By analysing 731,213 autosomal or X chromosome SNPs and an additional ∼1.9 million imputed variants in 4,694 individuals, we identified several SNPs associated with the selected quantitative trait loci (QTLs) and replicated all the top signals in an independent sample of 1,392 individuals from the same population. Next, to increase power to detect and resolve associations, we further genotyped the whole cohort (6,145 individuals) for 293,875 variants included on the ImmunoChip and MetaboChip custom arrays. Overall, our combined approach led to the identification of 9 genome-wide significant novel independent signals—5 of which were identified only with the custom arrays—and provided confirmatory evidence for an additional 7. Novel signals include: for IL-6, in the ABO gene (rs657152, p = 2.13×10−29); for ESR, at the HBB (rs4910472, p = 2.31×10−11) and UCN119B/SPPL3 (rs11829037, p = 8.91×10−10) loci; for MCP-1, near its receptor CCR2 (rs17141006, p = 7.53×10−13) and in CADM3 (rs3026968, p = 7.63×10−13); for hsCRP, within the CRP gene (rs3093077, p = 5.73×10−21), near DARC (rs3845624, p = 1.43×10−10), UNC119B/SPPL3 (rs11829037, p = 1.50×10−14), and ICOSLG/AIRE (rs113459440, p = 1.54×10−08) loci. Confirmatory evidence was found for IL-6 in the IL-6R gene (rs4129267); for ESR at CR1 (rs12567990) and TMEM57 (rs10903129); for MCP-1 at DARC (rs12075); and for hsCRP at CRP (rs1205), HNF1A (rs225918), and APOC-I (rs4420638). Our results improve the current knowledge of genetic variants underlying inflammation and provide novel clues for the understanding of the molecular mechanisms regulating this complex process
    • …
    corecore